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THE EFFECTS OF ALTERED SUPEROXIDE DISMUTASE EXPRESSION ON AGE-

RELATED FUNCTIONAL DECLINES AND SURVIVAL IN DROSOPHILA 

 

Ian Martin, B.Sc. 

 

A dissertation submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy at Virginia Commonwealth University. 

 

Virginia Commonwealth University, 2008 

 

Director: Dr. Michael Grotewiel 

Associate Professor, Department of Human Genetics 

 

Most organisms experience progressive declines in physiological function as they age. A 

number of studies in a variety of species support a strong link between oxidative damage, 

age-related functional declines and life span determination. Here, manipulating the 

expression levels of superoxide dismutase (SOD) isoenzymes SOD1 and SOD2, resulted 

in altered functional senescence and survival characteristics in Drosophila. 
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Overexpression of cytosolic Sod1 using the yeast GAL4/UAS system conferred a 30-34% 

increase in mean life span and resulted in an attenuated senescence of odor avoidance 

behavior in aging flies. Tissue-specific Sod1 overexpression selectively in the nervous 

system or muscle failed to reproduce these delayed aging phenotypes suggesting that 

Sod1 overexpression in these tissues alone was not primarily responsible for the aging 

effects observed. Graded reduction of mitochondrially localized Sod2 expression in a 

series of Sod2 mutants led to progressive reductions in life span, accelerated age-related 

functional declines, mitochondrial oxidative damage and neuronal cell death. Tissue-

specific Sod2 knock-down using RNA interference revealed that muscle is a key tissue 

underlying the accelerated age-related functional decline and mortality observed upon 

loss of SOD2. Sod2 knock-down in the musculature caused a degenerative phenotype 

consisting of a dramatic reduction in muscle mitochondrial content and ATP levels, 

elevated cell death and progressive locomotor dysfunction which culminated in early-

onset mortality. Collectively, these studies highlight the important role of SOD enzymes 

in protecting against the impact of oxidative damage on senescence and survival. These 

findings also lend further support to the oxidative damage hypothesis of aging.  
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Introduction 

 

1. Use of the Drosophila model to study aging 

Aging is a progressive decline in biological systems that impairs the ability of an 

organism to maintain homeostasis and consequently increases the organism’s 

susceptibility to disease and death (Harman, 2001). The fruit fly Drosophila 

melanogaster is one of the principal model organisms used for studying the biology of 

aging. Several features make flies suitable for aging research including their short 

development period and relatively short life span, both of which facilitate experimental 

efficiency in aging studies. Flies are also inexpensive to house and to maintain for the 

extended periods necessary for aging studies. Additionally, flies are appropriate for 

investigating the molecular-genetic basis of aging because there are powerful tools 

available to manipulate the fly genome, most of which has been sequenced. Moreover, 

most fly genes have direct homologues in mammals. To date, most aging studies in 

model organisms including Drosophila have focused on mortality as the main 

consequence of aging. These longevity studies have produced a vast number of 

discoveries that have enabled the identification of conserved genetic pathways and 

common environmental factors that influence survival in nematodes, fruit flies and mice 

(Barger et al., 2003; Boulianne, 2001; Guarente and Kenyon, 2000; Helfand and Rogina, 

2003; Kenyon, 2001; Tatar et al., 2003; Wood et al., 2004).  

 

Functional senescence, defined as the intrinsic age-related decline in functional status, 

has received very little experimental attention in model organisms. Nearly all organisms 
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manifest functional declines as a result of aging, although the nature and progression of 

these declines varies between species and also between individuals of the same species 

(Arking, 1998). While most aging research using flies has focused on regulation of life 

span, the fly is emerging as a powerful model system for investigating the biology 

underlying age-related functional declines. Central to the ability to use flies in this way is 

the large number of parallels between functional senescence in Drosophila and humans.  

 

2. Functional senescence in aging research 

Age-related declines in function can have severe consequences on the quality of life in 

elderly individuals. When questioned, older adults are much more concerned about 

preserving functionality late in life than simply extending their life span without regard to 

their functional status (Phelan et al., 2004). A prominent strategy in aging basic research 

has been attempting to identify manipulations that confer life span extensions in model 

organisms based on the premise that these may ultimately provide anti-aging benefits to 

humans. Although a number of genetic and other manipulations extend life span in 

various species, in most cases it is unclear whether these have global impacts on aging or 

instead selectively influence processes that support survival. Additionally, when 

manipulations that extend life span have been found and subsequently examined for their 

effects on age-related impairments in sensory, locomotor and reproductive function, these 

are often reported to remain unaltered (Fridell et al., 2005; Holzenberger et al., 2003; 

Cook-Wiens and Grotewiel, 2002). Hence, although any extension in life span 

presumably results from the preservation of one or more organ systems vital for life, it  
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does not necessarily engender a global benefit on age-related functional declines. 

Functional senescence studies have substantial merit because they can be used to identify 

key organ systems that fail with age under normal aging conditions and also to discover 

manipulations that positively impact functional status in aging. While some of these 

manipulations may attenuate functional senescence and prolong survival, others may 

delay or attenuate functional senescence without having any impact on survival. Such 

manipulations would still hold significant promise in aging research since they hold 

potential to improve the quality of life in aging individuals. 

 

3.  Age-related functional declines in flies 

The main animal model systems currently used to investigate the molecular-genetic basis 

of aging are the nematode C.  elegans, the fruit fly Drosophila melanogaster, and the 

mouse. Each of these has its own strengths and limitations for studies on aging, although 

the fly is particularly well suited for studying functional senescence. A number of 

metabolic and organ functions in flies can be assessed in the laboratory and many of 

these decline with age (summarized in Tables 1 and 2 and reviewed in Grotewiel et al., 

2005). Although the fly’s maximum life span (50-80 days) is significantly longer than 

that of the worm (~20 days), it is much shorter than in the mouse (2-3 years).  Consistent 

with its relatively short life span, the fly exhibits many age-related functional deficits 

fairly quickly and many of the functions that senesce in flies also senesce in humans. 

Additionally, while the genomes of the worm and fly are similar in size and comparably 

powerful genetic tools are available to manipulate them, more genes in the fly have  
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obvious mammalian homologues (Adams et al., 2000). Together these features make the 

fly an attractive model system for investigating genetic and other factors that influence 

functional senescence and for gaining insight into aging in humans. 

 

4.  The fly as a model for human functional senescence 

To evaluate the suitability of Drosophila as a model of age-related functional impairment 

in humans, it is useful to compare functional declines seen in flies to those seen in 

humans. Nearly all of the age-related functional declines seen in Drosophila (Table 1) are 

also observed in humans, consistent with the commonalities in basic biological systems 

in both species. Many aspects of locomotor function decline as humans age (Kozakai et 

al., 2000; McGibbon and Krebs, 2001; Rittweger et al., 2004; Shkuratova et al., 2004; 

Winter et al., 1990) as does memory function (Grady and Craik, 2000; Perlmutter et al., 

1981; Uttl and Graf, 1993), olfactory abilities (Kovacs, 2004; Landis et al., 2004; Larsson 

et al., 2000), cardiac function (Lakatta 1993; Fleg et al. 1995; AHA 2005), immune 

system function (Burns, 2004; Plackett et al., 2004), circadian rhythmicity (Copinschi 

and Van Cauter, 1995; Yoon et al., 2003), quality of sleep (Hood et al., 2004) and 

reproductive function (Araujo et al., 2004; Arking, 1998; Enzlin et al., 2004; Jung and 

Schill, 2004; Ng et al., 2004). The similarities between age-related functional decline in 

humans and Drosophila indicate that many aspects of functional senescence are 

conserved across phyla. Undoubtedly, some functions found in humans are not present in 

flies and are therefore not amenable to aging studies in this model, yet the commonalities  
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between these two species provide an opportunity to investigate the molecular-genetic 

basis for age-related functional decline through studies in Drosophila. 
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         Table 1.  Organismal and organ system senescence in Drosophila (from Grotewiel et al.,  2005).                                  6                                 

Function Main Effects of Age Approximate Age of Onset Principal References 
Negative geotaxis increased time required to complete task 

decreased climbing ability during timed test 
14-21 days (Miquel et al., 1976) 

(Gargano et al., 2005) 
Exploratory activity fewer flies move from release point 

flies move less far 
14-28 days (Le Bourg, 1983) 

(Le Bourg and Minois, 1999) 
Fast phototaxis decreased percentage achieving performance criterion 14-21 days 

 
(Leffelaar and Grigliatti, 1984) 

Flight shorter duration free flight ≤11 days @ 28°C 
 

(Leffelaar and Grigliatti, 1984) 

Habituation of PER reduced learning 42 days (maximum effect) 
 

(Fois et al., 1991) 

Suppression of PER reduced learning 28 days 
 

(Brigui et al., 1990) 

Olfactory memory impaired learning 
impaired memory 

10 days 
20 days 

(Tamura et al., 2003) 

Olfaction decreased innate odor aversion and attraction 
decreased odor responses in olfactory receptor neurons 

14-21 days 
5-10 days 

(Cook-Wiens and Grotewiel, 2002) 

Circadian rhythmicity shift to later peak in spontaneous activity 42 days 
 

(Driver, 2000) 

Noncircadian Rest decreased rest during night 16 days 
 

(Shaw et al., 2000) 

Male reproduction decreased copulation success 
decreased fertility 

100 days (maximum effect) 
90 days (maximum effect) 

(Miquel et al., 1976) 
(Economos et al., 1979) 

Sperm competition decreased sperm defense 
decreased sperm offense 

≤42 days 
≤42 days 

(Service and Fales, 1993) 

Female reproduction decreased egg-laying 
decreased fertility 

50 days (maximum effect) 
50 days (maximum effect) 

(David et al., 1975) 

Cardiac function reduced resting heart rate 
reduced maximum heart rate 
increased pacing-induced fibrillation 

≤25 days 
 

(Paternostro et al., 2001) 
(Wessells and Bodmer, 2004) 

Innate Immunity exaggerated induction of diptericin (live bacteria) 
dampened diptericin expression (heat-killed bacteria) 

28 days 
21-28 days 

(Zerofsky et al., 2005) 

Stress resistance decreased resistance to thermal stress 
decreased resistance to oxidative stress 
decreased resistance to starvation stress 
deceased resistance to desiccation stress 

50-60 days (maximum effect) 
10 days 
≤28 days 

14-21 days 

(Fleming et al., 1992) 
(Bonilla et al., 2002) 

(Minois and Le Bourg, 1999) 
(Nghiem et al., 2000) 

         Age of onset indicates the earliest age at which defects are observed. PER, proboscis extension reflex 
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Metabolic function Effect of Age Approximate Age of Onset or  
Maximum Age Tested 

Principal References 

Protein synthesis decreased total protein synthesis 
decreased synthesis of mitochondrial proteins 
Decreased EF-1α activity 

Immediately after emergence 
38 days 
21 days 

(Webster and Webster, 1979) 
(Fleming et al., 1986) 

(Webster and Webster, 1982) 
Basal metabolism decreased heat production 

decreased oxygen consumption 
no change in CO2 production 

35 days 
42 days 

across entire life span 

(Ross, 2000) 
(Lints and Lints, 1968) 

(Van Voorhies et al., 2004) 
ATP synthesis increased synthesis followed by  

decreased synthesis 
peaks at day 40, 

declines thereafter 
(Vann and Webster, 1977) 

Cytochrome C oxidase decreased activity 
 

14 days (Schwarze et al., 1998) 

Aconitase 
 

decreased activity 
 

25 days (Das et al., 2001) 

α-glycerophosphate dehydrogenase increased activity followed by 
decreased activity 

peaks at 13 days, 
declines thereafter 

(Baker, 1978) 

Ca2+-activated actomyosin ATPase increased activity followed by 
decreased activity 

peaks at 5 days, 
declines thereafter 

(Rockstein et al., 1981) 

Arginine phosphokinase increased activity followed by 
decreased activity 

peaks at 12 days, 
declines thereafter 

(Rockstein et al., 1981) 

Total SOD no change in activity 
increased activity  

measured across life span 
28-49 days 

(Massie et al., 1980) 
(Sohal et al., 1990) 

Cu-Zn SOD no change in activity 
decreased activity  

measured across life span 
50 days 

(Sohal et al., 1990) 
(Niedzwiecki et al., 1992) 

Mn SOD decreased activity 
increased activity  

10 days 
28 days 

(Massie et al., 1980) 
(Sohal et al., 1990) 

Catalase increased then decreased activity 
no change in activity  

peaks at 21 days then declines 
measured across life span 

(Sohal et al., 1990) 
(Niedzwiecki et al., 1992) 

Glutathione reductase increased then decreased activity  
 

peaks at day 20 then declines (Sohal et al., 1990) 

    Age of onset indicates the earliest age at which defects are observed or the maximum age tested in cases where no effect of age was found
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5. Aims of this investigation 

One of the leading mechanistic theories of aging is the oxidative damage hypothesis 

which postulates that aging occurs as a direct result of the age-dependent accumulation of 

molecular oxidative damage, causing a progressive functional deterioration of cells, 

tissues and organ systems (Harman 1956). A number of studies in a variety of species 

support an important role for oxidative damage in functional senescence and life span 

determination (reviewed later). A key prediction from these studies is that altering the 

levels of cellular antioxidant defenses will directly impact oxidative damage in aging 

organisms and that this in turn will determine the rate of functional senescence and 

longevity. In Drosophila, there is emerging evidence indicating that manipulating the 

expression levels of the key antioxidant superoxide dismutase (SOD) alters oxidative 

stress resistance and life span. Increases in SOD activity often result in prolonged 

survival whereas reducing SOD activity leads to shortening of the fly life span (Sun and 

Tower, 1999; Orr and Sohal, 1994; Sun et al., 2002; Duttaroy et al., 2003; Phillips et al., 

1989). However, the consequences of these manipulations on age-related functional 

declines are unknown.  

 

The central aim of this investigation was to examine the effects of manipulating 

antioxidant capacity on age-related functional decline in Drosophila. Powerful genetic 

tools were used to increase or decrease expression levels of SOD, in order to elucidate the 

consequences of altered SOD activity on functional senescence. A second aim of this 

study was to investigate whether any of the observed effects on functional aging and  
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survival were mediated by altered Sod expression in individual tissues. This was achieved 

by comparing the effects of manipulating SOD antioxidant levels in key tissue domains to 

those obtained by whole-body SOD manipulations. Finally, when specific tissues were 

found to be instrumental in the effects of altering SOD activity levels on functional 

senescence, the sub-cellular mechanisms underlying this association were investigated. 

This overall approach was designed to provide insight into the consequences of 

manipulating SOD expression levels on the senescence of key tissues and the impact of 

this on age-related functional declines and survival.    

 

The following introductory sections provide a review of the literature relevant to this 

study. The first review describes the role of oxidative damage in aging and the second 

summarizes evidence indicating a role for SOD in aging and age-related pathology. 
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The Role of Oxidative Damage in Aging 

 

 

1. Introduction 

In recent decades, several theories have been proposed that attempt to explain the 

underlying biological mechanisms of aging (Weinert and Timiras 2003). The oxidative 

damage theory of aging postulates that the age-dependent accumulation of oxidative 

damage to macromolecules causes a progressive functional deterioration of cells, tissues 

and organ systems that manifests as functional senescence and culminates in death 

(Harman 1956).   

 

Oxidative damage to lipids, proteins and nucleic acids occurs primarily via the action of 

reactive oxygen species (ROS). ROS can be generated by several mechanisms but the 

principal source in aerobic cells is mitochondria (Fridovich 2004). Certain components of 

the electron transport chain leak electrons to oxygen, promoting the univalent reduction 

of oxygen to superoxide (O2•-) (Balaban et al. 2005). Under normal physiological 

conditions, approximately 0.1% of oxygen (Fridovich 2004) or more (Chance et al. 1979) 

entering the electron transport chain is reduced to O2•-. Superoxide itself does not appear 

to damage all macromolecules at physiologically relevant concentrations; redox reactions 

involving O2•-, however, generate other reactive species that oxidatively damage nucleic 

acids, proteins and lipids (Halliwell and Gutteridge 1999). Although cells are equipped 

with a variety of antioxidants and multiple enzymatic systems to repair oxidative damage,  
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such damage is detectable under normal physiological conditions even in young animals 

(Agarwal and Sohal 1994). This suggests that the endogenous protective mechanisms 

cannot suppress all oxidative damage even during basal levels of ROS generation 

(Halliwell and Gutteridge 1999).   

 

2.  Accumulation of oxidative damage in aging 

A fundamental prediction from the oxidative damage hypothesis is that oxidative damage 

should increase with age. Consistent with this, there are many reports of age-related 

increases in oxidatively damaged nucleic acids, proteins and lipids in various tissues of 

many species (Sohal et al. 2002). In brain tissue from humans and several other 

mammalian species, aging is associated with increased oxidative damage to both 

mitochondrial and nuclear DNA, with damage to mitochondrial DNA being substantially 

higher than that of nuclear DNA (Mecocci et al. 1993; Barja and Herrero 2000). 

Additionally, oxidative damage to DNA causes mutations that can impair protein 

synthesis and lead to cell dysfunction (Wei and Lee 2002), suggesting that oxidative 

damage to DNA might impact aging. Oxidative damage to proteins also increases with 

age in a variety of experimental settings including Drosophila whole body (Agarwal and 

Sohal 1994), rat hepatocytes (Starke-Reed and Oliver 1989), canine brain tissue (Head et 

al. 2002) and human eye lens (Garland et al. 1988) and brain tissue (Smith et al. 1991). 

The measurement of protein carbonyls in hepatocytes from rats and eye lens and brain 

from humans suggests that as much as 30% of total cellular protein might be oxidatively 

damaged in aged organisms at least in some tissues (Starke-Reed and Oliver 1989). Since  
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oxidized proteins are often non-functional, protein oxidative damage might be central to 

senescence (Sohal et al. 2002). Oxidation of lipids produces lipid peroxides that can 

reduce membrane fluidity, inactivate membrane-bound proteins and decompose into 

cytotoxic aldehydes such as malondialdehyde or hydroxynonenal (Richter 1987). 

Accumulation of hydroxynonenal increases with age in several Drosophila tissues 

(Zheng et al. 2005) and the level of malondialdehyde and hydroxynonenal-conjugated 

collagen protein increases with age in rat tissue (Odetti et al. 1994). Hence, lipid 

oxidation might also impact aging. 

 

In principle, the accumulation of oxidative damage with age could occur via increased 

generation of oxidizing species, reduced antioxidant capacity, reduced repair of oxidative 

damage, decreased degradation of oxidized macromolecules, or some combination of 

these mechanisms (Sohal and Weindruch 1996; Mary et al. 2004). ROS content rises with 

age in mouse (Sohal et al. 1994), rat (Sohal et al. 1990), gerbil (Sohal et al. 1995) and 

housefly (Sohal and Sohal 1991), consistent with this mechanism being important for the 

accumulation of oxidative damage during aging. Expression and enzymatic activity of 

Methionine Sulfoxide Reductase A and B (MSRA and MSRB, respectively), enzymes 

that repair oxidative damage to methionine residues, decline with age in rat brain, liver 

and kidney (Petropoulos et al. 2001) as well as during replicative senescence in human 

fibroblasts (Picot et al. 2004).  Similarly, the activities of three mitochondrial DNA 

glycosylases involved in base-excision repair of oxidatively damaged DNA decline with 

age in brain tissue from mice (Imam et al. 2005) and rats (Chen et al. 2002).   
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Furthermore, the activity of the proteosome, the principal avenue for removal of 

oxidatively damaged proteins, declines with age in human muscle (Husom et al. 2004), 

eye lens (Viteri et al. 2004), lymphocytes (Petropoulos et al. 2000) and epidermis 

(Bulteau et al. 2000; Chondrogianni et al. 2000; Petropoulos et al. 2000) as well as in rat 

liver (Shibatani et al. 1996), spinal cord (Keller et al. 2000), eye lens (Shang et al. 1997), 

heart (Bulteau et al. 2002) and retina (Louie et al. 2002).  Thus, the ability of cells to 

control oxidative damage to macromolecules via repair and degradative systems are 

compromised during aging, suggesting that these changes also underlie the age-related 

accumulation of oxidatively damaged macromolecules.  In contrast, a broad change in 

antioxidant capacity with age is not well supported. The activities of some antioxidants 

decline with age whereas the activities of others remain unchanged or even increase 

(Massie et al. 1980; Sohal et al. 1990; Sohal et al. 1990; Niedzwiecki et al. 1992), 

indicating that aging is not associated with a global reduction in antioxidant capacity 

(Sohal and Weindruch 1996). Thus, the principal mechanisms currently thought to drive 

the increase in oxidative damage with age are increased ROS generation by mitochondria, 

reduced repair of oxidatively damaged proteins and DNA, and decreased degradation of 

oxidatively damaged proteins by the proteosome (Sohal and Weindruch 1996; Sohal et al. 

2002; Mary et al. 2004).   

 

3. Oxidative damage and life span determination 

Many studies using a variety of species implicate oxidative damage in the determination 

of life span. The rates of mitochondrial O2•- and H2O2 generation correlate inversely with  
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maximum life span in non-primate mammals (Ku et al. 1993; Barja 1998). Additionally, 

age-related oxidative damage to mitochondrial DNA in a number of mammalian species 

and to proteins in different species of flies inversely correlates with maximum life span 

(Sohal et al. 1995; Barja and Herrero 2000). Manipulations such as caloric restriction, 

lowering ambient temperature or eliminating flight activity in flies extends life span, 

reduces the rates of mitochondrial O2•- and H2O2 generation, and decreases the rate of 

oxidative damage accumulation (Buchan and Sohal 1981; Yan and Sohal 2000; Merry 

2004). Additionally, flies selected for late-life reproduction are frequently long-lived 

(Rose and Charlesworth 1981; Clare and Luckinbill 1985; Luckinbill and Clare 1985; 

Partridge et al. 1999) and resistant to oxidative stress (Harshman et al. 1999; Arking et al. 

2000; Arking et al. 2000). These correlations are consistent with oxidative damage being 

causal in life span determination. 

 

Several pharmacological studies further support a role for oxidative damage in life span 

determination. Chronic administration of SOD/catalase mimetics nearly doubles the life 

span of wild-type C. elegans and completely rescues the life span of worms with a mev-1 

mutation that elevates age-related oxidative damage (Melov et al. 2000). Similarly, flies 

fed 4-phenylbutyrate have life span extension coupled with increased oxidative stress 

resistance (Kang et al. 2002). A number of other studies in rodents and fruit flies show 

that dietary supplementation with antioxidants can increase life span (Comfort et al. 

1971; Oaknin-Bendahan et al. 1995; Bezlepkin et al. 1996; Bains et al. 1997), although 

extensions of life span are not always found (Lonnrot et al. 1995; Meydani et al. 1998; Le  
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Bourg 2001). Overall, though, these studies suggest that oxidative damage has a role in 

determining life span.  

 

Arguably the strongest evidence that connects oxidative damage to life span comes from 

a number of genetic studies. Mutations in genes including daf-2 in C. elegans (Kimura et 

al. 1997; Honda and Honda 1999), methuselah in Drosophila (Lin et al. 1998) and shc 

(Migliaccio et al. 1999) or Igf1 receptor (Holzenberger et al. 2003) in mice confer life 

span extension in conjunction with increased resistance to oxidative stress. Targeted 

expression of the antioxidant enzyme catalase (normally located in peroxisomes) to 

mitochondria in mice extends life span and decreases the age-related increase in oxidative 

damage to DNA (Schriner et al. 2005). In Drosophila, life span and oxidative stress 

resistance are increased by overexpression of MSRA (Ruan et al. 2002), CuZn-SOD 

(Parkes et al. 1998; Sun and Tower 1999), the DNA methyltransferase gene dDnmt2 (Lin 

et al. 2005), and the human mitochondrial uncoupling protein hUCP2 (Fridell et al. 

2005).  Overexpression of three different heat shock proteins (Hsp22 (Morrow et al. 

2004), Hsp26 or Hsp27 (Wang et al. 2004)) reportedly causes similar phenotypes in flies, 

although the results with Hsp22 are somewhat controversial (Bhole et al. 2004). In yeast, 

MSRA overexpression significantly increases life span and overexpression of MSRB 

coupled with caloric restriction yields life span extensions of 119% (Koc et al. 2004). 

Conversely, mice that lack the msra gene have both a reduced life span and enhanced 

sensitivity to oxidative stress (Moskowitz et al. 2001) and CuZn-SOD or Mn-SOD 

deficiency in fruit flies reduces life span under normal rearing conditions as well as in the  
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presence of an oxidative stressor (Phillips et al. 1989; Kirby et al. 2002; Duttaroy et al. 

2003). Although the role of oxidative damage in longevity remains at least somewhat 

controversial (Sohal et al. 2002), the genetic studies reviewed here strongly implicate 

oxidative damage in life span determination. 

 

4. Contribution of oxidative damage to functional senescence 

A variety of functions senesce in animals including memory, locomotor, reproductive, 

sensory and immune functions (Arking 1998; Grotewiel et al. 2005).  In many cases, 

there is evidence that oxidative damage contributes to these age-related functional 

declines (Tables 3 and 4).  

 

Table 3. Genetic manipulations that impact oxidative damage and functional 
senescence (from Martin and Grotewiel, 2006). 
 
Manipulation Effect on 

oxidative stress 
resistance 

Effect on functional senescence References 

EC-SOD 
overexpression 

Unknown Attenuated decline in spatial 
learning and memory in mice 

Levin et al. 2002; 
Levin et al. 2005 
 

CuZn-Sod 
knock-out 
 

Unknown Accelerated loss of hearing 
sensitivity in mice 
 

McFadden et al. 
1999a, 1999b 
 

MSRA 
overexpression 

↑ stress 
resistance 

Attenuated decline in 
locomotion in Drosophila 
Delayed and attenuated decline 
in reproduction in Drosophila 
 

Ruan et al. 2002 
Ruan et al. 2002 

Hsp22 
overexpression  
 

↑ stress 
resistance 

Delayed decline in locomotion 
in Drosophila 

Morrow et al. 2004 
 

See main text for detailed descriptions and additional citations. 
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   Complete description and additional citations are provided in main text. mtDNA, mitochondrial DNA; LTP, long-term potentiation 

Pharmacological or dietary 
manipulation 

Effect on oxidative 
damage 

Effect on functional senescence Principal references 

SOD/catalase mimetics 
 

↓ oxidative damage Attenuated decline in contextual fear learning in mice 
 

Liu et al. 2003 

Vitamin E 
  

↓ ROS production  
Unknown 
Unknown 
Unknown 

Attenuated decline in spatial learning and memory in rats 
Attenuated decline in testosterone production in rats 
Attenuated decline in immune response to viral challenge in mice 
Attenuated decline in cell-mediated immunity in humans 

Joseph et al. 1999 
Chen et al. 2005 
Hayek et al. 1997 
Meydani et al. 1997 
 

Vitamin E and Coenzyme Q ↓ ROS production Attenuated  decline in active avoidance learning and memory in mice 
 

McDonald et al. 2005 

Vitamin E and vitamin C 
 

↓ oxidative damage  
Unknown 

Reversed decline in LTP in rat dentate gyrus 
Attenuated decline in oocyte meiosis and release in mice 
 

Murray & Lynch 1998 
Tarin et al. 1998 

Vitamin E, vitamin C and phenyl-
α-tert-butylnitrone  
 

Unknown Attenuated decline in spatial learning and memory in rats 
 

Socci et al. 1995 
 

Vitamin E, vitamin C, melatonin 
or lazaroid  
 

↓ mtDNA “common” 
deletion 

Attenuated loss of hearing sensitivity in rats Seidman et al. 2000 

Spinach or strawberry extract  
 

↓ ROS production 
(strawberry only) 

Attenuated decline in spatial learning and memory in rats Joseph et al. 1999 
 
 

Blueberry extract  ↓ ROS production 
↓ ROS production 

Attenuated decline in locomotion in rats 
Attenuated decline in spatial learning and memory in rats 
 

Joseph et al. 1999 
Joseph et al. 1999 

Caloric restriction ↓ oxidative damage  
↓ oxidative damage 

Attenuated decline in locomotion in mice 
Attenuated decline in lymphocyte proliferation in rats 

Dubey et al. 1996 
Tian et al. 1995 
 

Thioproline and N-acetylcysteine 
 

Unknown Attenuated decline in cell-mediated immune response in mice De la Fuente et al. 
2002 

4-phenylbutyrate ↑ oxidative stress 
resistance 
 

Attenuated decline in locomotion in Drosophila Kang et al. 2002 
 

ROS-generating compounds Unknown Attenuated loss of hearing sensitivity in guinea pigs Clerici & Yang 1996 
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4.1 Senescence of learning and memory   

Aging in humans and other animals is associated with declines in a number of cognitive 

functions including short-term memory, problem-solving abilities and information 

processing speed (Christensen 2001). As noted above, oxidative damage accumulates in 

brain from many species as they age (Sohal et al. 1995; Dubey et al. 1996; Aksenova et 

al. 1998; Head et al. 2002). A growing amount of evidence suggests that this oxidative 

damage contributes to the age-related impairment of learning and memory. 

 

The age of onset and extent of cognitive declines in individuals within the same 

population can vary substantially in humans and laboratory animals (Arking 1998). An 

important prediction from the oxidative damage theory is that the onset a magnitude of 

decline in a particular cognitive function should correlate with the amount of oxidative 

damage to the brain regions mediating that function (Sohal et al. 2002). This prediction 

has been tested by evaluating young (4-month-old) and aged (22-month-old) mice in a 

behavioral battery and then measuring protein oxidative damage in multiple brain regions 

from each mouse individually (Forster et al. 1996). In these studies, age-associated 

impairment of learning in the Morris water maze correlated with the amount of protein 

oxidative damage in the cortex; i.e., animals with more oxidative damage in the cortex 

displayed a greater impairment in memory function (Forster et al. 1996). These data 

support the hypothesis that the nature and severity of age-related memory deficits in an 

individual depend on the extent of oxidative damage to specific brain regions.   
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If senescence of memory is caused by oxidative damage, reducing this damage by 

enhancing antioxidant capacity in aging animals should preserve memory function. 

Superoxide dismutase (SOD) is an integral enzymatic antioxidant that reduces O2•- to 

H2O2, which is in turn converted to water by catalase or glutathione peroxidase (Balaban 

et al. 2005). Consistent with the oxidative damage hypothesis, overexpression of 

extracellular SOD (EC-SOD) throughout the lifetime of transgenic mice protects them 

from age-dependent declines in spatial learning and memory assessed in an 8-arm radial 

maze (Levin et al. 2002; Levin et al. 2005). Pharmacological intervention with 

antioxidants has also been used to assess the role of oxidative damage in senescence of 

memory. Continuous systemic administration of two SOD/catalase mimetics from 8 to 11 

months of age in mice reduces the age-related increase in oxidative damage to protein, 

lipid and DNA during this period (Liu et al. 2003). Additionally, mimetic-treated mice 

have better memory performance in a fear-conditioning paradigm than vehicle-treated 

controls (Liu et al. 2003). This is consistent with oxidative damage playing a role in the 

senescence of spatial memory in mice and suggests that age-related decline in memory 

function can be reversed by antioxidant treatment.  Further studies will be required, 

however, to determine whether the SOD/catalase mimetics are retarding the age-related 

decline in memory or, instead, are acting as cognitive enhancers that are elevating 

behavioral performance at all ages. 

 

Other studies indicate that dietary antioxidants can also attenuate age-related declines in 

learning and memory in rodents.  For example, young (6-months-old) rats fed a diet  
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supplemented with α-tocopherol (vitamin E) for 8 months have reduced age-related 

deficits in a spatial learning and memory task, the Morris water maze (Joseph et al. 

1998). Interestingly, late-life supplementation of rodent diets with vitamin E combined 

with other antioxidants can protect against age-related memory impairments and age-

associated defects in neural plasticity. Aged (24-month-old) mice fed vitamin E plus 

coenzyme Q for 14 weeks have improved learning in an active avoidance assay, although 

learning is not significantly improved in mice receiving either antioxidant alone 

(McDonald et al. 2005). Similarly, supplementing the diet of aged (22-months-old) rats 

with vitamin E and ascorbate (vitamin C) for 12 weeks reverses age-associated deficits in 

long-term potentiation (Murray and Lynch 1998), a leading model of synaptic plasticity 

thought to underlie learning and memory (Murase and Schuman 1999). Finally, aged (24-

month-old) rats receiving daily injections of the spin-trapping compound phenyl-α-tert-

butylnitrone and vitamin E plus vitamin C in their diet for 2 months have better memory 

performance in the Morris water maze (Socci et al. 1995) as do 19-month-old rats fed 

strawberry, spinach, or blueberry extracts for 8 weeks (Joseph et al. 1999). Collectively, 

these studies indicate that consuming a diet rich in antioxidants or antioxidant 

supplements might prevent or even reverse age-related memory defects.  High doses of 

vitamin E, however, are associated with an increase in mortality in patients with chronic 

disease (Miller et al. 2005), highlighting the need to carefully investigate antioxidant 

treatment regimens for positive as well as negative health effects.  Other therapeutic 

approaches aimed at delaying aging could also be explored.  For example, since oxidative 

damage in the brain is associated with up-regulation of genes mediating inflammatory  
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responses, inflammation might be tied to senescence of memory via oxidative stress 

(Blalock et al. 2003).  If so, anti-inflammatory drugs also might be of therapeutic value in 

retarding cognitive senescence. 

  

4.2 Senescence of sensory function 

Age-related functional declines in the auditory, visual and olfactory systems are among 

the most prominent age-related changes observed in humans (Doty 1991; Keller et al. 

1999). Age-related hearing loss in humans manifests as a progressive impairment of 

auditory sensitivity, mainly affecting the detection of high frequency sounds (Seidman et 

al. 2002). Similar age-related auditory defects are seen in mice, which experience a loss 

of sensory hair cells progressing from the base to the apex of the cochlea (high to low 

sound frequency) (McFadden et al. 1999). Applying ROS-generating compounds to the 

guinea pig cochlea results in an increase in the sound intensity threshold required to elicit 

cochlear action potentials (Clerici and Yang 1996). This suggests that inducing oxidative 

stress in the cochlea leads to an impairment of auditory sensitivity that mimics normal 

aging (Clerici and Yang 1996). The antioxidant enzyme CuZn-SOD, found mainly in the 

cytosol (Landis and Tower 2005), normally protects against age-related hearing loss. 

Mice with knockout of Sod1, the gene that encodes CuZn-SOD, experience an 

accelerated loss of hair cells along the length of the cochlea between 2 and 19 months of 

age (McFadden et al. 1999). Decreased expression of Sod1 also reduces auditory 

sensitivity in 13 month-old mice and exacerbates the normal age-related loss of auditory 

nerve fibers and spiral ganglion cells (sensory cells located in the spiral ganglion of the  
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cochlea) found at this age (McFadden et al. 1999). Although reduced expression of 

CuZn-SOD appears to accelerate senescence of the auditory system, CuZn-SOD 

overexpression in mice provides no detectable protection against age-related hearing loss 

up to 7 months of age (Coling et al. 2003). This suggests that normal CuZn-SOD levels 

are sufficient to prevent defects in auditory function caused by oxidative damage during 

the initial stages of aging. It would be informative to determine whether overexpression 

of CuZn-SOD confers protection from age-related auditory dysfunction in mice older 

than 7 months of age. Additionally, it would be interesting to further assess the ability of 

supplementation with dietary antioxidants or overexpression of antioxidant enzymes to 

protect or possibly reverse auditory system senescence in mice. For example, one study 

suggests that dietary supplementation with vitamin E, vitamin C, melatonin or a synthetic 

lazaroid antioxidant confers partial protection against age-related loss of auditory 

sensitivity in rats (Seidman 2000).  

 

There is emerging evidence that oxidative damage plays a role in the pathogenesis of age-

related macular degeneration, a common cause of blindness in humans over 60 years of 

age (Liang and Godley 2003). Although the visual loss associated with macular 

degeneration results from photoreceptor cell damage in the central retina (i.e. the 

macula), initial development of pathology involves degeneration of the retinal pigment 

epithelium (Green et al. 1985). Retinal pigment epithelial cells exist in a highly oxidative 

environment due to a high oxygen partial pressure from underlying capillaries and 

because of they are exposed to light that generates ROS via photochemical reactions  
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(Liang and Godley 2003). Consequently, the retinal pigment epithelium is rich in a 

variety of antioxidant defenses to cope with this environment (Beatty et al. 2000). The 

levels of some antioxidants are reduced in eyes or serum from individuals with macular 

degeneration (Liles et al. 1991; Cohen et al. 1994; Bernstein et al. 2002; Simonelli et al. 

2002) and lipid peroxidation products are elevated in plasma from these individuals 

(Totan et al. 2001; Gu et al. 2003; Yildirim et al. 2004). These data suggest a role for 

reduced antioxidant capacity and elevated oxidative damage in the pathogenesis of 

macular degeneration. Consistent with this mechanism, individuals with high dietary 

intake of antioxidant carotenoids (Seddon et al. 1994) or vitamin E, vitamin C and beta-

carotene (AREDSRG 2001) have a reduced risk of developing advanced stages of 

macular degeneration. Thus, oxidative damage might have a central role in the etiology 

of macular degeneration. The development of animal models for macular degeneration 

would greatly facilitate our understanding of oxidative damage in this important cause of 

blindness 

 

Another prominent sensory system that senesces in humans is the olfactory system. As 

much as two-thirds of the elderly population has at least some form of olfactory 

impairment (Murphy et al. 2002). Although age-related olfactory impairments also occur 

in model organisms such as rodents and Drosophila, relatively few studies address the 

role of oxidative damage in olfactory system senescence. Age-related defects in olfactory 

system function are exacerbated in the senescence-accelerated mouse (SAM-P1) 

(Getchell et al. 2003). Electrophysiological response of the olfactory epithelium to the  
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odorant vanillin decreases substantially with age between 10 and 50 weeks in these mice 

and is associated with a loss of olfactory receptor cells (Nakayasu et al. 2000). SAMP-P1 

mice also display an age-related atrophy of the anterior olfactory nucleus (which receives 

direct projections from the olfactory bulb), a change not found in controls (Shimada et al. 

1994). Importantly, oxidative damage to protein and lipid are increased in aged SAM-P1 

mice (Yagi et al. 1995; Butterfield et al. 1997), suggesting that oxidative damage could 

be responsible for the rapid decline in olfactory system function in these animals. It 

would be interesting to determine whether genetic manipulations that enhance antioxidant 

defenses or the repair of oxidative damage can ameliorate olfactory system senescence in 

SAM-P1 and normal mice.  

 

Fruit flies also develop defects in their behavioral response to odorants as they age 

(Cook-Wiens and Grotewiel 2002; Tamura et al. 2003).  Curiously, the Drosophila 

mutant methuselah has enhanced resistance to oxidative stress (Lin et al. 1998), but does 

not appear to have a detectable change in the senescence of olfactory behavior (Cook-

Wiens and Grotewiel 2002). Assuming that increased resistance to oxidative stress leads 

to a reduced accumulation of oxidative damage in aging methuselah flies, this finding 

suggests that senescence of the olfactory system in Drosophila might be independent of 

oxidative damage. Other interpretations, however, are also possible. One alternative 

possibility is that mutation of methuselah protects organ systems important for survival in 

the presence of a strong oxidizing agent but not those that mediate olfactory behavior. 

Another possibility is that mutation of methuselah protects the fly from oxidative damage  
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only during defined time periods and that the critical periods for oxidative damage 

impacting the olfactory system and survival are distinct. Additional independent 

strategies that mitigate oxidative damage will be key to further exploring the possible 

connection between oxidative damage and senescence of the olfactory system in flies and 

other animals.  

 

4.3 Senescence of locomotor function 

In humans, deficits in the ability to perform locomotor tasks such as lifting, walking, 

turning, standing and sitting occur with age (Ridgel and Ritzmann 2005). Analogous 

changes also occur in mice (Ingram et al. 1981) and fruit flies (Grotewiel et al. 2005). In 

principle, locomotor senescence could arise from functional deficits in regions of the 

nervous system or the musculature that have specific motor roles. Both nervous and 

muscle tissue are thought to be especially prone to oxidative damage due to their high 

metabolic rate and high rate of ROS generation without commensurate enhancement of 

antioxidant defenses (Halliwell and Gutteridge 1999).  

 

Locomotor senescence in humans and other animals is associated with an age-related loss 

of muscle mass and function (Ridgel and Ritzmann 2005). Consistent with the oxidative 

damage model of aging, skeletal muscle exhibits age-dependent increases in oxidative 

damage to DNA, lipids and proteins (Mecocci et al. 1999). Deletions in mitochondrial 

DNA, which can be caused by oxidative damage (Short et al. 2005), accumulate focally 

in the skeletal muscle of humans (Melov et al. 1995). Deletions in mitochondrial DNA  
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co-localize with sites of muscle fiber atrophy in rats (Wanagat et al. 2001), suggesting 

that oxidative damage to mitochondrial DNA could contribute to the age-associated loss 

of muscle fibers (Melov et al. 1995; Short et al. 2005).  

 

A stronger link connecting mitochondrial DNA deletions and muscle atrophy is derived 

from additional studies. Cytochrome c oxidase is a key enzyme in the respiratory chain of 

mitochondria (Wilson 1982) and consists of subunits encoded by both nuclear and 

mitochondrial genes (Coenen et al. 2001). In rhesus monkeys, rats and probably humans, 

the number of muscle fibers with defects in cytochrome c oxidase activity increases with 

age (Muller-Hocker 1990; Boffoli et al. 1996; Aspnes et al. 1997; Lee et al. 1998). 

Importantly, the activity of cytochrome c oxidase is substantially lower or absent at sites 

of mitochondrial DNA deletions and muscle fiber atrophy in senescent rhesus monkeys 

(Lee et al. 1998; Wanagat et al. 2001). Moreover, muscle fibers with larger regions of 

impaired cytochrome c oxidase activity are more likely to exhibit atrophy (Wanagat et al. 

2001). Decreases in cytochrome c oxidase sub-unit expression in aging human muscle are 

associated with decreased mitochondrial DNA content, decreased ATP production and 

reduced aerobic capacity (Short et al. 2005). Similarly, reduced cytochrome c oxidase 

activity in aged fruit flies is associated with decreased mitochrondial respiration 

(Ferguson et al. 2005), reduced ATP levels and increased lipid peroxidation (Schwarze et 

al. 1998). Decreased ATP synthesis in muscle fibers would presumably impair their 

ability to contract, thereby reducing their functionality (Volpi et al. 2004). Collectively, 

these studies support a model (Fig. 1) in which oxidative damage to mitochondrial DNA  
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accumulates focally in aging muscle and leads to reduced expression and function of 

cytochrome c oxidase. This, in turn, compromises ATP production, which impairs muscle 

contractility and ultimately manifests as muscle atrophy (Aiken et al. 2002). 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 1. Schematic representation of a model linking oxidative damage to muscle 
fiber atrophy. See text for details.  Reductions are indicated by narrow downward 
arrows. ROS, reactive oxygen species; mtDNA, mitochondrial DNA; ANT, adenine 
nucleotide translocase. 
 

A second route leading to impaired ATP generation, muscle atrophy and locomotor 

senescence might proceed through direct oxidative damage to mitochondrial proteins. 

The activity of aconitase declines with age in Drosophila and housefly flight muscle (Das 

et al. 2001). The activity of adenine nucleotide translocase also declines with age in the 

housefly (Yan and Sohal 1998). The decrease in activity of these proteins coincides with 

their accumulation of protein carbonyls (Yan and Sohal 1998; Das et al. 2001),  
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suggesting that protein oxidative damage underlies the observed decreases in enzymatic 

activity. Since both of these enzymes are important for mitochondrial ATP production 

(Yarian and Sohal 2005), it seems likely that loss of activity would result in ATP deficits 

that over time could lead to muscle atrophy (Figure).  

 

Locomotor senescence has also been investigated at the whole-organism level. 

Laboratory selection for late-life reproduction in Drosophila females produced a number 

of long-lived strains (Rose and Charlesworth 1981; Clare and Luckinbill 1985; Luckinbill 

and Clare 1985; Partridge et al. 1999). Many of the long-lived strains have enhanced 

resistance to oxidative stress (Harshman et al. 1999; Arking et al. 2000; Arking et al. 

2000) and at least one of them exhibits delayed senescence of negative geotaxis (Arking 

and Wells 1990), a locomotor behavior. These studies are consistent with oxidative 

damage driving locomotor senescence. Several other studies suggest that locomotor 

senescence might be caused by oxidative damage specifically in the nervous system. In 

mice, age-related decline in bridge-walking, a motor coordination skill, is associated with 

increased protein oxidation in the cerebellum, a structure important for balance and fine 

movement (Forster et al. 1996). Caloric restriction, a reduction in caloric intake that 

extends life span in a number of species (Bordone and Guarente 2005; Masoro 2005; 

Partridge and Brand 2005), reduces oxidative damage to proteins in the mouse 

cerebellum with a concomitant reduction in senescence of locomotor skills (Dubey et al. 

1996). This suggests that protein oxidative damage underlies age-dependent defects in 

locomotion. Supplementing the diet of aged rats with an antioxidant-rich blueberry  
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extract improves performance in two locomotor tasks involving rod walking (Joseph et 

al. 1999). The enhanced locomotor performance of the extract-fed animals is associated 

with improved biochemical measures of neuronal function, consistent with the improved 

aging of locomotor behavior being due to reduced oxidative damage in the brain (Joseph 

et al. 1999). In Drosophila, overexpression of either Methionine Sulfoxide Reductase A 

(MSRA, an enzyme that repairs oxidative damage to methionine residues) (Ruan et al. 

2002) or the mitochondrial heat shock protein Hsp22 (Morrow et al. 2004) in the nervous 

system enhances resistance to oxidative stress and delays senescence of locomotion. 

Together, these studies in rodents and Drosophila strongly implicate oxidative damage to 

the nervous system in age-related declines in locomotor skills.  

 

Other studies suggest that mechanisms other than oxidative damage might also be 

involved in locomotor senescence. Flies with a mutation in the methuselah gene have 

enhanced resistance to oxidative stress (Lin et al. 1998), but no obvious change in 

senescence of two locomotor behaviors (Cook-Wiens and Grotewiel 2002). Conversely, 

reduced expression of the myospheroid and chico genes, which encode a β integrin 

(MacKrell et al. 1988) and an insulin signaling molecule (Bohni et al. 1999), 

respectively, retard locomotor senescence in Drosophila without significantly altering 

resistance to oxidative stress (Clancy et al. 2001; Goddeeris et al. 2003; Gargano et al. 

2005). Although it remains to be determined whether oxidative damage is decreased in 

methuselah and unchanged in myospheroid and chico mutants (as predicted from studies 

on stress resistance), the simplest interpretation of these data is that mechanisms in  
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addition to oxidative damage might influence locomotor senescence in Drosophila. It will 

be important to identify these mechanisms. 

 

4.4 Senescence of reproductive function 

Multiple aspects of reproductive function decline with age in males and females of many 

species (Arking 1998). Although the nature of reproductive senescence varies 

considerably across different species, certain commonalities are found throughout much 

of the animal kingdom. For example, males typically experience decreases in sperm 

production and motility along with a variety of changes in their sexual behavior as they 

age (Kidd et al. 2001; DeLamater and Sill 2005). Similarly, females experience an 

accelerated loss of oocyte reserves, decreased oocyte quality, as well as changes in 

reproductive behavior during aging (te Velde and Pearson 2002; DeLamater and Sill 

2005; Lobo 2005). Oxidative damage to reproductive tissues in both sexes is implicated 

in several of these reproductive declines (Abidi et al. 2004).   

 

Reproductive function is dependent on the synthesis and secretion of steroid hormones in 

male and female reproductive tissues (Nussey and Whitehead 2001). During aging, 

steroid hormone synthesis and secretion decline in humans and other animals (Danilovich 

et al. 2002; Cao et al. 2004). In males, there is evidence that oxidative damage plays a 

role in the senescence of steroid hormone biosynthesis in the testes (Diemer et al. 2003; 

Cao et al. 2004). Steroidogenic Leydig cells isolated from the testes of aged rats display 

higher levels of mitochondrial superoxide than those from young rats (Chen et al. 2001).  



www.manaraa.com

31 

Additionally, Leydig cell membrane preparations from aged (24 months-old) male rats 

have 2- to 3-fold more lipid peroxides than do young (5-month-old) male rats (Cao et al. 

2004). This increase in lipid peroxidation is associated with reduced antioxidant capacity, 

including declines in glutathione content and activities of CuZn-SOD, Mn-SOD and 

glutathione peroxidase-1 (Cao et al. 2004). Furthermore, aged rats fed a vitamin E-

deficient diet between 6 and 24 months of age display higher levels of hydroxynonenal in 

the epididymis than controls (Jervis and Robaire 2004) and supplementing the diet of 

aging rats with vitamin E between 6 and 25 months of age attenuates the senescence of 

Leydig cell testosterone production (Chen et al. 2005). An increase in oxidant content 

and a decrease in antioxidant capacity, therefore, may underlie the age-associated decline 

in steroid production in male reproductive tissues. In support of this possibility, treatment 

of mouse Leydig tumor cells with H2O2 inhibits progesterone production in a dose-

dependent manner (Stocco et al. 1993) and exposure of cells to ROS impairs the transport 

of cholesterol to the inner mitochondrial membrane, the rate-limiting step in the 

biosynthesis of steroid hormones (Diemer et al. 2003). Collectively, these studies indicate 

that oxidative damage to the testes contributes to the age-related decline in steroid 

hormone production that, in turn, leads to reproductive senescence in males. 

   

In females, oocyte quality declines with age in many mammalian species (te Velde and 

Pearson 2002). This decline is thought to be caused by an increase in the frequency of 

oocyte aneuploidy in aged animals resulting from non-disjunction during meiosis (te 

Velde and Pearson 2002). Consequently, embryos from women aged 40 or older often  
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exhibit chromosomal abnormalities and fail to develop more frequently than do those 

from younger women (teVelde and Pearson 2002). Supporting a role for oxidative 

damage in senescence of oocyte quality, aging female mice receiving dietary 

supplementation with vitamins C and E continuously from birth produce fewer aneuploid 

oocytes (Tarin et al. 1998). The age-related decline in gonadotropin-stimulated oocyte 

release is also ameliorated in vitamin C- and E-supplemented mice (Tarin et al. 1998). 

Lastly, experimentally-induced oxidative stress in dividing mouse oocytes results in an 

increased frequency of aneuploidy and spindle disorganization (Tarin et al. 1996). It is 

possible that oxidative damage to chromosomes and microtubule spindle proteins could 

account for the meiotic dysfunction observed in aged females (Tarin et al. 1998); this 

possibility remains to be directly tested. 

 

A number of studies indicate a role for oxidative damage in the senescence of female 

reproductive function in fruit flies. Several strains of Drosophila selected for late-life 

female fecundity have enhanced resistance to oxidative stress (Harshman et al. 1999; 

Arking et al. 2000; Arking et al. 2000), suggesting that oxidative damage might 

contribute to senescence of reproduction in Drosophila females. An additional study 

supports this possibility by suggesting that oxidative damage to proteins might be 

involved in reproductive senescence (Ruan et al. 2002). Although proteins can be 

oxidized at all amino acid residues, methionine residues are the most susceptible to 

oxidation and, together with cysteine, are the only amino acids that when oxidized can be 

repaired (Stadtman et al. 2005). Methionine sulfoxide reductases A and B (MSRA and  
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MSRB) catalyze the reduction of methionine sulfoxide back to methionine (Stadtman et 

al. 2005). MSRA content in various rat tissues declines with age (Petropoulos et al. 

2001), raising the possibility that reduced repair of oxidative damage to proteins might 

influence various aspects of senescence. This possibility was explored by overexpressing 

MSRA throughout the Drosophila nervous system and then assessing female 

reproductive senescence. Flies that overexpress MSRA exhibit enhanced resistance to 

oxidative stress as expected (Ruan et al. 2002). MSRA-overexpressing females also have 

significant delays in the onset of reproductive senescence and an extension in the total 

reproductive period (Ruan et al. 2002). These data suggest that oxidative damage to 

protein methionine residues might drive reproductive senescence in Drosophila. It would 

be interesting to determine whether additional enzymes that repair oxidative damage are 

involved in reproductive senescence in flies and other animals.  

 

4.5 Senescence of immune system function 

Age-related changes in immune function occur in humans and a number of other species. 

These changes include abnormalities in the function of many immune cells which results 

in impaired cell-mediated immune responses in aged organisms (Linton and Dorshkind 

2004). Consequently, immune system senescence is associated with an increase in the 

incidence of infections and cancer in the elderly (De la Fuente 2002). The ability of 

caloric restriction or dietary supplementation with antioxidants to suppress senescence of 

the immune system has been investigated in numerous studies (Meydani et al. 2004). 

Aged (17 month-old) mice receiving a diet supplemented with the antioxidants  
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thioproline and N-acetylcysteine for 4 weeks exhibit enhanced phagocytic activity of 

macrophages and neutrophils, increased natural killer cell activity and enhanced 

proliferation of lymphoid cells in response to mitogen (De La Fuente et al. 2002). In 

another study, aged mice received a vitamin E-supplemented diet for 6 weeks and were 

subsequently infected with influenza virus (Hayek et al. 1997). In contrast to control 

animals, vitamin E-fed mice do not experience weight loss in the week following 

infection (indicating that they maintain consumption of food), have significantly lower 

pulmonary viral titers (consistent with greater pathogen clearance), and exhibit an 

increase in cell-mediated immune function. The effects of vitamin E supplementation on 

immune function in young mice in this study were much smaller than those observed in 

aged mice (Hayek et al. 1997), indicating that vitamin E supplementation protects mice 

from age-related declines in immune function. Similarly, supplementing the diet of 

healthy humans older than 65 years of age with vitamin E for 4.5 months results in a 

dose-dependent increase in cell-mediated immune function and an increase in antibody 

titers to hepatitis B and tetanus vaccines (Meydani et al. 1997). The observations that 

dietary supplementation with certain antioxidants can ameliorate specific age-related 

defects in immune system function suggest that pharmacological intervention might be 

beneficial for maintaining a healthy immune system throughout adulthood.  Several 

issues related to the role of oxidative damage in immune system senescence, however, 

remain to be further addressed. For example, it will be important to determine whether 

the positive effects of dietary supplements on the immune system are due to the 

antioxidant properties of these supplements or some other biochemical property.  
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Additionally, it will be necessary to determine whether all antioxidant-induced 

improvements in immune system function are due to a bona fide reduction in immune 

system senescence as opposed to an acute stimulation of the immune system. This issue 

is particularly important given that treating macrophages isolated from mice with a 

number of antioxidants (vitamin E, vitamin C, glutathione, N-acetylcysteine, thioproline, 

or thiazolidine-4-carboxylic acid) in vitro results in an acute improvement in the function 

of these cells (Del Rio et al. 1998). 

 

Caloric restriction decreases the accumulation of oxidative damage in rodents 

(Chipalkatti et al. 1983; Koizumi et al. 1987; Youngman 1993; Sohal et al. 1994), 

monkeys (Zainal et al. 2000), and Drosophila (Zheng et al. 2005). The mechanisms 

underlying this effect, which might include either a reduction in ROS generation or 

enhancement of antioxidant defenses, are currently under debate (Masoro 2005). 

Interestingly, splenic lymphocytes of male rats fed a calorie-restricted diet display an 

attenuated loss of proliferative response to phytohemagglutinin and concanavalin A 

between 5 and 31 months of age (Tian et al. 1995). The age-related accumulation of lipid 

peroxides and protein carbonyls in splenic lymphocytes correlates with their decline in 

proliferative capacity and is reduced in caloric restricted rats (Tian et al. 1995). This 

suggests that a reduction in caloric intake might delay immune system senescence via a 

reduction in oxidative damage to immune system cells. 
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5. Functional senescence: a link between oxidative damage and life span 

determination? 

The studies reviewed above indicate that the accumulation of oxidative damage with age 

is a significant cause of functional senescence and an important determinant of life span 

in a number of species. Are oxidative damage, functional senescence and longevity 

connected? This question has begun to be addressed in several studies that determined 

whether life span and age-related functional decline were impacted by manipulations that 

reduce oxidative damage or enhance resistance to oxidative stress. In Drosophila, 

senescence of locomotor activity and reproductive function is delayed while life span is 

extended and oxidative stress resistance is enhanced in strains selected for late life 

reproduction (Arking and Wells 1990) and by overexpression of MSRA in the nervous 

system (Ruan et al. 2002). The administration of SOD/catalase mimetics can almost 

double the life span of C. elegans and these same compounds can prevent the appearance 

of age-related cognitive defects in mice (Melov et al. 2000; Liu et al. 2003). Feeding a 

diet supplemented with 4-phenylbutyrate elevates resistance to oxidative stress, increases 

life span and delays loss of locomotor function in Drosophila (Kang et al. 2002). 

Overexpression of the heat shock protein Hsp22 in motor neurons reportedly has similar 

effects in flies (Morrow et al. 2004), although the positive changes in stress resistance 

and life span via Hsp22 expression is controversial (Bhole et al. 2004).  Nevertheless, 

these data suggest that oxidative damage, life span extension and age-related functional 

declines are linked. These connections are consistent with a model in which the functions 

being assessed in these studies are directly involved in life span determination.  
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Other studies, however, have not found such connections between oxidative damage, life 

span and age-related declines in specific functions. In Drosophila, targeted expression of 

hUCP2 to neurons extends life span and increases resistance to oxidative stress, but 

spontaneous locomotion in aged flies and senescence of fertility were unchanged by this 

manipulation (Fridell et al. 2005). Similarly, mutation of the Ifg1 receptor gene in mice 

extends life span and enhances resistance to oxidative stress, but does not delay 

senescence of female fertility (Holzenberger et al. 2003). Additionally, the Drosophila 

mutant methuselah, despite being long-lived and resistant to oxidative stress (Lin et al. 

1998), has normal age-related declines in exploratory activity, locomotor activity and 

olfactory behavior (Cook-Wiens and Grotewiel 2002). Furthermore, extension of life 

span and delayed age-related decline in locomotor activity in Drosophila with mutations 

in chico (Clancy et al. 2001; Tu et al. 2002; Gargano et al. 2005) or myospheroid 

(Goddeeris et al. 2003) occur in the absence of changes in oxidative stress resistance. 

Collectively, these data demonstrate that life span, oxidative damage and at least some 

aspects of functional senescence can be experimentally uncoupled.  Any extension in life 

span, however, presumably results from preservation in the function of one or more vital 

organ systems that allows the organism to live longer. Hence, in studies where 

attenuating oxidative damage extends life span, but does not protect specific functions 

from senescence, it is likely that at least one untested function is positively impacted by 

manipulating oxidative damage. It will be important to identify the organ systems and 

functions that directly mediate the effects of reduced oxidative damage on life span and  
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to determine whether these key organ systems and functions differ between various 

species.  

 

6. Summary 

Oxidative damage accumulates with age in tissues that govern many senescent functions. 

Functional senescence can be accelerated by manipulations that increase oxidative 

damage and also retarded by manipulations that reduce it (Tables 3 and 4). These data 

support a role for oxidative damage in functional senescence. The molecular mechanisms 

through which oxidative damage contributes to age-related impairment of physiological 

function, however, remain to be systematically investigated. Continuing pharmacological 

and genetic studies aimed at attenuating oxidative damage in conjunction with assessing 

functional senescence should further illuminate the role of oxidative damage in age-

related physiological decline. Additional studies that incorporate life span analyses 

should identify age-related functional losses critical to survival and determine whether 

oxidative damage plays a role in the demise of key organ systems that impact life span. 

Such studies will allow us to better understand the biology of aging through delineation 

of the connections between oxidative damage, functional senescence and longevity.
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The Role of Superoxide Dismutases in Aging  

 

1. The family of superoxide dismutase isoenzymes 

The mitochondrial electron transport chain is the primary source of reactive oxygen 

species in eukaryotes, with 0.1% or more of oxygen entering the chain being univalently 

reduced to superoxide (Fridovich, 2004; Chance et al., 1979). The escape of superoxide 

presents a direct threat to mitochondria and the whole cell due to the potential damage 

this reactive intermediate and downstream reactive species can inflict (Balaban et al., 

2005). The superoxide dismutases are a family of antioxidant enzymes present across all 

phyla that catalyze the dismutation of superoxide to oxygen and hydrogen peroxide 

(Halliwell and Gutteridge, 1999) as in equation 1. 

 

O2•- + O2•- + 2H+   H2O2 + O2                                                            (equation 1) 

 

Hydrogen peroxide is subsequently converted to water in a reaction catalyzed by catalase 

or peroxidase. Hence, superoxide dismutases act in concert with other cellular antioxidant 

enzymes to eliminate superoxide in order to prevent its toxicity. The accumulation of 

oxidative damage with age in the tissues of many species indicates that this protection is 

not complete. 

 

CuZnSOD (SOD1) is present in nearly all eukaryotic and some prokaryotic cells where it 

is principally located in the cytosol but also found in lyzosomes, nuclei and inter- 
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mitochondrial membrane space (Halliwell and Gutteridge, 1999). SOD1 has a molecular 

weight of about 32 kDa and is dimeric, with each subunit containing an active site. 

MnSOD (SOD2), also found in all kingdoms, is tetrameric in higher organisms and 

contains manganese at the active site instead of copper and zinc. SOD2 is almost 

exclusively localized to the mitochondrial matrix, in close proximity to the primary 

source of superoxide. An extracellular type of CuZnSOD, named SOD3, is also found in 

many species which exists as tetrameric glycoproteins mostly bound to cell surfaces. 

Finally, an Fe-SOD was discovered in E.coli and later found in several other bacteria, 

algae and higher plants.  

 

2. The role of superoxide dismutases in aging 

The oxidative damage hypothesis of aging is supported by many reports of age-related 

increases in oxidatively damaged macromolecules in numerous tissues of many species 

(Sohal et al., 2002). Another causal link between oxidative damage and aging has been 

provided by genetic and pharmacological studies in which antioxidant levels have been 

manipulated in model organisms resulting in altered survival and functional senescence 

(reviewed in Martin and Grotewiel, 2006). Changes in SOD expression levels have been 

shown to impact model organisms in a manner consistent with these antioxidants having 

a direct role in aging and survival. Studies that illustrate this connection are briefly 

reviewed below. 
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The importance of SOD antioxidant function is underscored by the consequences 

observed upon eliminating it from living organisms. Genetic knock-out of Sod1 in mice 

was shown to cause elevated endogenous oxidative stress, female infertility (Ho et al. 

1998), motor impairments (Shefner et al. 1999), accelerated age-related hearing loss 

(McFadden et al. 1999) and an ~30% reduction in mean life span (Elchuri et al. 2005). 

Conversely, overexpression of extracellular SOD3 improved learning and memory in 

aged mice (Levin et al. 2002) while combined administration of SOD/catalase mimetics 

to middle aged mice prevented macromolecular oxidative damage and almost completely 

prevented cognitive deficits that appeared in controls during the 3-month test period (Liu 

et al. 2003). Treating C. elegans with SOD/catalase mimetics resulted in a substantial 

extension in life span in normal worms and completely rescues the life span of worms 

with a mev-1 mutation that elevates age-related oxidative damage (Melov et al., 2000). In 

Drosophila, the Sod1-null phenotype was shown to include increased spontaneous 

genomic damage (Woodruff et al., 2004) adult sensitivity to hyperoxia and paraquat, 

male sterility, female semisterility and early-onset mortality (Reveillaud et al., 1994, 

Parkes et al. 1998). Conversely, whole-body or motor neuron-specific overexpression of 

Sod1 resulted in significant life span extension and attenuation of oxidative damage 

accrual (Sun et al. 2004; Sun and Tower 1999; Parkes et al. 1998, Orr and Sohal 1994). 

Furthermore, Sod1 overexpression in Drosophila motorneurons was reported to partially 

restore the reduced life span of flies carrying a mutation in SOD1 commonly found in 

individuals with familial Amyotrophic Lateral Sclerosis (Parkes et al. 1998). Although  
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the life span-extending effects of Sod1 overexpression have been demonstrated in 

Drosophila, little is known about its effects on functional senescence. 

 

Complete loss of SOD2 activity in mice results in mitochondrial disease (Melov et al., 

1999), neurodegeneration, motor impairments consistent with underlying motor cortex 

degeneration, cardiomyopathy and perinatal death (Li et al., 1995; Lebovitz et al., 1996). 

Transgenic mice overexpressing Sod2, on the other hand, exhibit slight extensions in life 

span, decreased mitochondrial superoxide in the hippocampus but no rescue of impaired 

synaptic plasticity or memory function in old mice (Hu et al., 2007). The consequences of 

Sod2 knock-out in Drosophila are similarly devastating on survival, with all flies being 

dead by 36 hrs of age (Duttaroy et al., 2003). Increasing Sod2 expression throughout 

adulthood, on the other hand, prolongs survival in proportion to the degree of increase in 

SOD2 activity, up to a maximum mean life span extension of 33% (Sun et al., 2002). 

 

These studies in model organisms establish an important role of superoxide dismutases in 

modulating the impact of ROS-mediated oxidative damage on senescence and survival. 

While some of the phenotypes resulting from Sod mutations resemble those commonly 

seen in aged organisms, others e.g. cardiomyopathy in Sod2 null mice are more 

suggestive of an underlying pathology. In practice, however, it is difficult to definitively 

determine whether any of these phenotypes resulting from a loss of SOD function truly 

represent an accelerated form of normal aging or alternatively, are pathological in nature. 

This is because phenotypes that resemble accelerated aging could be caused by a  
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global pathological state unrelated to aging that still manifests as accelerated senescence. 

Conversely, changes in certain organ systems that result in phenotypes not typically seen 

in normal aging may only appear pathological in nature because they are not expressed 

within the normal boundaries of aging, i.e. before mortality intervenes. Nonetheless, age-

related phenotypes are altered by both decreasing and increasing Sod expression levels in 

a manner consistent with the oxidative damage hypothesis of aging. This evidence 

reinforces the role of SOD antioxidant function in the aging process. While the effects of 

SOD manipulations on Drosophila life span are established, it remains to be determined 

how changes in SOD activity affect other important aspects of aging such as age-related 

functional senescence. From a human perspective of aging, an extension of life span via 

increased antioxidant function without commensurate enhancement in healthy function 

span (the portion of life span that an animal remains functional) would be considered 

fruitless. Since many of the functional declines in humans are also seen in model 

organisms, work seeking manipulations to suppress functional senescence such as 

increasing SOD activity in Drosophila will offer important insights into their potential 

benefit in humans. A central aim to the studies reported in this dissertation was to 

discover the effects of such manipulations in SOD activity to age-related functional 

declines in Drosophila.  
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Research Chapter 1.  

Effects of Whole-Body and Tissue-Specific Sod1 Overexpression on Life Span and 

Age-Related Functional Declines in Drosophila 

 

1. Introduction 

An important prediction from the oxidative damage hypothesis of aging is that enhancing 

the antioxidant capacity of cells by elevating levels of endogenous antioxidants or by 

administering exogenous antioxidants might attenuate organismal aging (Orr and Sohal, 

1994). Indeed, augmenting the levels of numerous antioxidants individually or in 

combination can increase life span and/or ameliorate age-related functional declines in 

several model organisms (reviewed in Martin and Grotewiel, 2006). Interestingly, some 

manipulations positively impact both functional and survival parameters of aging 

whereas others confer benefit to functional status or survival alone, indicating the 

complex nature of the association between oxidative damage, functional senescence and 

life span regulation. In Drosophila, Sod1 overexpression either alone or in conjunction 

with catalase has been shown to result in a substantial increase in life span although it 

remains to be determined how Sod1 overexpression affects other important aspects of 

aging. Here, we sought to investigate the consequences of Sod1 overexpression on age-

related functional declines and to determine whether the effects observed were mediated 

by elevated SOD1 activity in certain tissues essential to those functions. 
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2. Materials and Methods 

 

2.1 Fly stocks and husbandry 

Flies were reared to adulthood at 25°C and 55% relative humidity under a 12 hour light–

dark cycle on a sugar : yeast : cornmeal : agar medium (10% : 2% : 3.3%: 1% w/v) 

supplemented with 0.2% Tegosept (Sigma Chemical Co., St. Louis, MO, USA) and 

active yeast. Flies carrying the 2nd chromosome UAS-human Sod1 (hSod1) transgene 

were provided by Gabrielle Boulianne and were back-crossed into our standard 

laboratory stock, w[CS], which harbors the w1118 allele backcrossed to Canton-S (Cook-

Wiens & Grotewiel, 2002; Gargano et al., 2005) for six generations. The actin 5C-Gal4 

strain (a5CGal4, supplied by David Arnosti) carries a 2nd chromosome GAL4 enhancer-

trap that expresses the GAL4 transcriptional activator ubiquitously and was also 

backcrossed into a w[CS] background. To generate flies with a5CGal4-driven expression 

of the hSod1 transgene and appropriate non-activated controls in an isogenic background, 

a5CGal4 and hSod1 flies were mated to each other or to w[CS] recipient flies, 

respectively. A second independent ubiquitous hSod1-expressing line plus control groups 

were generated by mating the ubiquitous Gal4 driver strain, Daughterless-Gal4 (DaGal4, 

from John Phillips) to hSod1 and w[CS] flies, respectively. Flies expressing hSod1 

targeted to muscle plus controls were generated by mating two independent muscle-

specific Gal4 drivers, 24B-Gal4 (Bloomington stock center) and Mef2-Gal4 (gift from 

Sunita Gupta Kramer) to hSod1 or w[CS] flies, respectively. Flies expressing hSod1 pan-

neuronally plus controls were generated by mating two independent pan-neuronal GAL4  
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drivers, Appl-Gal4 (from Lawrence Goldstein) and elaV-Gal4 (Bloomington stock 

center) to hSod1 or w[CS] flies, respectively. In the Gal4 screen of odor avoidance 

behavior, the Gal4 lines indicated were mated to hSod1 and w[CS] flies to generate 

progeny overexpressing Sod1 in various nervous system components and controls, 

respectively. 

 

2.2 Odor avoidance  

All flies for behavioral tests were reared and aged at 25°C, 60% relative humidity under a 

12 hour light/dark cycle.  Avoidance of flies to 4-methylcyclohexanol (MCH, Sigma 

Chemical Co. St. Louis, MO, USA, dilution factor 1:100) was assessed. One- to four-day-

old adults were briefly anesthetized with CO2, separated by gender, and males were 

transferred in groups of 25 to fresh food vials. Male flies at various ages were transferred 

to a T-maze. After one minute of rest, flies were allowed two minutes to choose between 

a maze arm containing an air stream with MCH and an opposing arm containing an air 

stream without an explicit odorant. After each two-minute choice test, flies were briefly 

anesthetized with CO2. Flies that moved into the two arms of the T-maze were counted 

and (for longitudinal studies) transferred together into a fresh food vial for aging until the 

next assessment. Odor avoidance scores were calculated as the percentage of flies that 

moved into the arm without odorant minus the percentage of flies that moved into the arm 

with odorant. A score of 100 results if all flies avoid the arm that contains odorant. A 

score of zero results if flies do not respond to the odorant. Six to ten vials of flies were 

tested for each genotype to derive N =6-10.  
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2.3 Negative Geotaxis  

Groups of 25 male flies were collected under brief CO2 anesthesia and allowed to recover 

at least 18 hours at 25°C and 60% relative humidity prior to assay. Flies were transferred 

to the RING apparatus (described in Gargano et al., 2005) After a 1 minute rest, the 

apparatus was rapped sharply on a table three times in rapid succession to initiate 

negative geotaxis responses. The flies’ positions in the tubes were captured in digital 

images taken 4 sec after initiating the behavior. This constituted one trial. Five trials 

separated by 30 sec inter-trial rest periods were performed in all experiments. After 

testing, flies were transferred to food vials and housed until the next test. Digital images 

of the flies were transferred to a PC and analyzed to determine the positions for each fly 

in each tube as an X-Y coordinates. The performance of flies in a single vial was 

calculated as the average of 5 consecutive trials to generate a single datum. Five vials of 

flies were tested per genotype to derive N=5. 

 

2.4 Survival  

200 adult flies of each genotype 0-3-days old were collected under brief CO2 anesthesia 

and transferred to food vials at a density of 25 flies per vial. Surviving flies were counted 

at each transfer to fresh food, every 3-4 days. All genotypes were aged in parallel at 

25°C, 60% relative humidity under a 12 hour light/dark cycle.  

 

 

 



www.manaraa.com

48 

2.5 SOD activity  

Groups of 25 adult males (0-4 days old) per genotype were collected under brief CO2 

anesthesia and homogenized in extraction buffer (50 mM potassium phosphate/0.1 mM 

EDTA/2% Triton-X-100, pH 7.8) on ice. Samples were then probe sonicated for 20 sec 

and incubated at 4oC for 45 mins. Next, samples were centrifuged at 14,000 rpm for 15 

mins at 4oC and the resulting supernatant was harvested and stored at 4oC until use. 

Protein concentration measurements were performed using the Lowry method (Bio-rad 

DC Protein Assay). Samples containing equal amounts of protein were electrophoresed 

using discontinuous Native PAGE (4% stacking gel pH 6.8, 20% resolving gel pH 8.8) in 

sample buffer (0.5 M Tris-HCl/50% glycerol/0.01% bromophenol blue) at 80-100 V. 

SOD activity was measured colorimetrically using a modified version of an “in-gel” SOD 

assay previously described (Kirby et al., PNAS 2002). Briefly, gels were first soaked in a 

solution containing 2.5 mM nitroblue tetrazolium in 50 mM potassium phosphate buffer 

for 20 mins in the dark under gently agitation. Gels were next washed briefly in 50 mM 

phosphate buffer then transferred to a second solution (28 mM TEMED/28 µM 

riboflavin/50 mM potassium phosphate) for 15 mins in the dark under gentle agitation. 

After a second brief wash in 50 mM pottasium phosphate buffer, gels were placed on a 

light box and exposed to white light to allow color development for approximately 15 

mins. Gels were imaged and an index of SOD activity was quantified by densitometry 

using Alpha Imager software (Alpha Innotech Corp., San Leandro, CA). 
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2.6 Statistical analyses 

Survival statistical analyses were done using JMP (SAS, Cary, NC, USA) to derive mean 

and median life span. All other statistical analyses were done using either JMP or 

GraphPad Prism (GraphPad Software, Inc., San Diego, CA, USA). Specific statistical 

analyses performed are indicated in each Figure legend. 

 

3. Results 

 

3.1 Sod1 overexpression increases SOD1 activity, extends life span and improves odor 

avoidance behavior in 4-week old flies 

Sod1 overexpression was achieved in Drosophila using the GAL4/UAS system as 

described in materials and methods. Expression of a human Sod1 transgene (hSod1) using 

either of two ubiquitous Gal4 drivers resulted in a two- to three-fold increase in whole-

body SOD1 activity relative to flies containing Gal4 or hSod1 transgenes alone, 

confirming that functional human SOD1 protein was expressed (Fig. 2). A life span-

extending effect of ubiquitous Sod1 overexpression has previously been reported (Sun 

and Tower, 1999; Orr and Sohal, 1994) and was confirmed here (Fig 3). Mean life span 

of Sod1 overexpressor flies was increased by 30-34% relative to controls while median 

life span (age at which 50% of initial cohort are still alive) was increased by 17-29%. 
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Figure 2. SOD activity in Sod1 overexpressing flies. (A) In-gel SOD activity assay of 
whole-body extracts (containing 30µg protein) from flies expressing the UAS-hSod1 
transgene via two independent ubiquitous GAL4 drivers (a5CGal4 or DaGal4). Sod1 
overexpressors and controls were generated as described in materials and methods. 
Densitometric analysis revealed a significant increase in SOD1 activity via a5CGal4 
(ANOVA, p<0.05) (B) but not via DaGal4 (ANOVA) (C). Tukey’s honestly significant 
different (HSD) post-test revealed that in (B), SOD1 activity was significantly increased 
compared to both control groups (p<0.05). There was no effect of hSod1 overexpression 
on SOD2 activity via either GAL4 driver (individual ANOVAs). Densitometry data are 
mean of duplicate measurements.  
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Figure 3. Survival in Sod1 overexpressing flies. Adult males (200 per genotype) 
overexpressing Sod1 via DaGal4 (A) or a5CGal4 (B)-mediated hSod1 expression plus 
relevant controls (see materials and methods) were maintained at 25oC and 55% relative 
humidity in shell vials (25 per vial). Flies were transferred to fresh medium and scored 
for survivorship twice weekly. The mean and median life spans (days) were as follows: 
hSod1/+; +/+ (mean =57, median =53); DaGal4/+; +/+ (mean =57, median =57); 
hSod1/+; DaG4/+ (mean =74, median =74); a5CGal4/+ (mean =54, median =53); 
a5CGal4/hSod1 (mean =66, median =71). Data are representative of two independent 
experiments. 
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The substantial increase in life span observed suggested that other manifestations of 

aging sensitive to oxidative damage accumulation, such as age-related functional 

declines, might be altered in flies overexpressing Sod1. The avoidance of noxious odors 

(in a T-maze assay) is a behavior seen robustly in young flies that declines progressively 

with age due to an impairment in the ability to detect and/or move against an aversive 

stimulus (Cook-Wiens and Grotewiel, 2002). Movement toward light or away from 

electric shock in the same T-maze apparatus is not affected by age over the time period in 

which declines in odor avoidance behavior manifest suggesting that this decline is not 

due to age-related locomotor impairment (Cook-Wiens and Grotewiel, 2002). 

Additionally, olfactory receptor neurons exhibit an age-associated loss of odor-evoked 

electrophysiological responses (Ayer and Carlson 1992) consistent with a loss of sensory 

function at least partly underlying senescence of odor avoidance behavior. Sod1 

overexpressing flies tested at 4 weeks of age (the age at which large deficits in odor 

avoidance behavior typically occur in standard laboratory strains) for avoidance to 4-

methylcyclohexanol (4-MCH) performed significantly better than controls (Fig. 4). 

Avoidance indices in control flies were at the low levels expected for 4-week old flies 

whereas the performance of Sod1 overexpressors was at the level typically seen in young 

flies (Cook-Wiens and Grotewiel, 2002) suggesting that the period of youthful function 

may have been prolonged in these animals. To further explore this possibility, it was 

necessary to measure odor avoidance behavior in young flies overexpressing Sod1 and 

then at intervals throughout the life span. 
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Figure 4. Odor avoidance in Sod1 overexpressing flies. There was 
a significant effect of genotype on avoidance behavior (ANOVA, p 
=0.0215, n =8). Tukey’s HSD post-test revealed that Sod1 
overexpressors performed significantly better than a5CG4/+ controls 
but not hSod1/+ controls. Data are mean ± S.E.M.  
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Measurement of odor avoidance behavior across age had previously been carried out in 

this lab using cross-sectional studies (i.e. by measuring performance of multiple fly 

cohorts with each cohort assessed at a separate age point and then discarded), which 

involves generating and maintaining very large numbers of flies. An alternative, more 

resource-conserving approach is the longitudinal assessment of a single cohort of flies 

across age. Before applying this type of longitudinal assay to Sod1 overexpressors, it was 

necessary to validate the use of longitudinal assays to measure olfactory behavior 

declines in general.  

 

3.2 Longitudinal odor avoidance assay validation 

There are several differences between cross-sectional and longitudinal behavioral assays 

that could impact behavior and therefore needed to be addressed to validate the use of 

longitudinal assays. First, in cross-sectional studies, cohort size (number of flies tested in 

each trial) was kept constant across age whereas in longitudinal assessments, cohort size 

would inevitably decline with age due to mortality within sample groups. Hence, we 

asked whether variability in the number of flies tested in each trial (i.e. fly density) would 

have an effect on odor avoidance performance within that trial. The results show that in 

young or aged males, a difference in fly density does not lead to altered performance in 

the T-maze assay (Fig. 5). Second, we asked whether repeated exposure to the odorant (4-

MCH), T-maze apparatus or brief anesthesia following testing would affect behavior in 

flies tested at multiple ages. To address these possibilities, longitudinal and cross-

sectional studies were carried out in parallel on the same w[CS] standard laboratory strain  



www.manaraa.com

55 

of flies. The results showed that the performance of the cohort assessed longitudinally 

was indistinguishable from that of the cohorts assessed cross-sectionally throughout the 

assessment period. This demonstrates that when tested at weekly intervals, repeated 

exposure to 4-MCH, the T-maze apparatus or anesthesia does not alter their behavior or 

confound our ability to accurately measure the effects of aging on performance.  
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Figure 5. Longitudinal odor avoidance assay validation. There was no significant 
effect of varying the number of young 1-week old (A) or aged 5-week old (B) flies tested 
per trial on avoidance of w[CS] males to 4-MCH (individual ANOVAs, n =8). (C) There 
was no significant effect of longitudinal (closed bars) vs. cross-sectional (open bars) 
assessment of odor avoidance to 4-MCH in w[CS] males between 1 and 5 weeks of age 
(two-tailed unpaired t-tests performed on 3- and 5-week old flies separately). Data are 
mean ± S.E.M. 
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3.3 SOD1 overexpression ameliorates senescence of odor avoidance 

Flies overexpressing Sod1 were tested for odor avoidance behavior across age in 

longitudinal studies (Fig. 6). Sod1 Overexpression driven by both a5CGal4 and DaGal4 

resulted in attenuated decline of odor avoidance behavior across age. As mentioned 

before, this behavior contains both sensory and motor output components and hence it’s 

possbile that the effects of Sod1 overexpression could occur due to an attenuated decline 

of sensory detection or processing, stimulus-evoked locomotor response or some 

combination of these functions. Using the GAL4/UAS system, it was possible to directly 

address these possibilities by targeting Sod1 overexpression to key tissues underlying 

olfactory sense and locomotor functions.  
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Figure 6. Odor avoidance across age in Sod1 overexpressing flies. Odor avoidance 
performance index (PI) was assessed at the indicated ages. (A) There was a significant 
effect of age and genotype on odor avoidance behavior (two-way ANOVA, p<0.0001, n 
=8). Tukey’s HSD post-test revealed that Sod1-overexpressing hSod1/+; DaGal4/+ flies 
performed significantly better than both control groups (hSod1/+; +/+ or +/+; 
DaGal4/+) across age and that control groups were not statistically different (hence 
presented here in combined form). (B) a5CGal4/+ and hSod1/+ control groups 
performed indistinguishably across age (two-way ANOVA, n =8) and are presented here 
in combined form. Comparison of Sod1-overexpressing a5CGal4/hSod1 flies to control 
groups combined revealed an effect of age but not genotype on behavior and a significant 
interaction between age and genotype (two-way ANOVA, p = 0.0149, n =8-16). Data 
(mean ± S.E.M.) are compiled from two independent experiments. 
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3.4 Tissue-targeted SOD1 overexpression studies 

It has long been held that muscle and nervous system tissues are inherently more 

susceptible to oxidative damage due to their extreme metabolic demands (resulting in 

high rates of ROS generation) without commensurate levels of antioxidant defenses 

(Halliwell and Gutteridge, 1999). To determine whether aging of olfactory behavior and 

survival were altered in Sod1-overexpressing flies due to an effect of increased SOD1 on 

locomotor capacity, Sod1 overexpression was driven specifically in the musculature or 

motor neurons and flies were assessed for odor avoidance across age and survival (Fig. 

7). There was no significant effect of muscle- or motor neuron-specific Sod1 

overexpression on odor avoidance declines although it did appear that there might be a 

subtle effect of muscle-targeted overexpression (Fig 7C and 7E), conferred by a large 

increase in SOD1 activity (Fig. 7G and 7H). Likewise, targeted expression in these 

groups did not prolong survival, suggesting that the life span extension effect of 

ubiquitous Sod1 overexpression was not principally due to expression specifically in 

these tissues. Additionally, assessment of negative geotaxis across age in flies with 

ubiquitously elevated SOD1 indicated that locomotor function was either unchanged or 

only modestly affected by ubiquitous Sod1 overexpression (Fig. 8). Collectively, these 

findings suggest that the effects of ubiquitous Sod1 overexpression on odor avoidance 

senescence and survival are not primarily due to effects on age-related decline in 

locomotor function. 
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Figure 7 (previous page). Odor avoidance and life span following targeted Sod1 
overexpression in muscle and motor neurons.  Odor avoidance performance index (PI) 
(A,C,E) and survival studies (B,D,F) were performed on flies expressing hSod1 driven in 
motor neurons (A and B) using D42Gal4, or muscle using 24BGal4 (C and D) or 
Mef2Gal4 (E and F). In odor avoidance assays, comparison of Sod1 overexpressors 
(Gal4/hSod1, ▼), Gal4/+ (▲) and hSod1/+ (■) controls in each data set revealed a 
significant effect of age but not genotype on 4-MCH odor avoidance (individual two-way 
ANOVAs, n =8). In survival studies, Sod1 overexpressors (blue solid line) were not 
longer lived than Gal4/+ (green dashed line) and hSod1/+ (red dotted line) controls. (G) 
In-gel SOD activity assay of whole-body extracts (containing 30µg protein) from flies 
expressing the UAS-hSod1 transgene via the muscle-specific Mef2Gal4 driver and 
controls generated as described in materials and methods. Densitometric analysis (H) 
revealed a significant increase in SOD1 activity (ANOVA, p<0.001, n =2). Tukey’s HSD 
post-test revealed that SOD1 activity in Sod1 overexpressors was significantly higher 
than both controls, p<0.01). There was no effect of Sod1 overexpression on SOD2 
activity (ANOVA, n =2). Odor avoidance data are mean ± S.E.M. Densitometry data are 
mean of duplicate measurements.  
 

 

 

 

 

 

 

 

 
 
Figure 8. Negative geotaxis behavior in flies ubiquitously overexpressing Sod1. There 
were significant effects of age and genotype on negative geotaxis (individual two-way 
ANOVAs, p<0.0001, n =5-10) in flies expressing hSod1 via a5CGal4 (A) or DaGal4 (B) 
drivers compared to controls harboring Gal4 or hSod1 transgenes alone. Tukey’s HSD 
post-test revealed that in (A) Sod1 overexpressors performed significantly better than 
both control groups across age (p<0.05) and in (B) that Sod1 overexpressors performed 
better than DaGal4/+; +/+ controls (p<0.05) but not hSod1/+; +/+ controls across age. 
Data (mean ± S.E.M.) are compiled from two independent experiments. 
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To investigate whether Sod1 overexpression in tissues required for olfactory 

chemoreception or central processing of stimuli accounted for the effects on odor 

avoidance senescence, a multitude of fly lines were generated that overexpressed Sod1 in 

olfactory sense organs and/or individual regions of the brain thought to be important for 

olfactory response behavior (Table 5). These lines were screened for odor avoidance 

behavior at 4 weeks of age. From this screen, only one line that overexpressed Sod1 in 

the central complex, a region implicated in controlling locomotor responses exhibited 

elevated performance. Subsequent assessment of this line across age, however, produced 

contradicting results indicating that odor avoidance senescence was not actually 

attenuated by overexpressing Sod1 in this brain region (Fig. 9A). Also, survival analyses 

indicated that life span was not altered through Sod1 overexpression in the central 

complex (Fig. 9B).  
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Table  5. Screen for odor avoidance behavior in Sod1 overexpressors 
Region of expression Gal4 enhancer 

trap line 
Effect on odor 
avoidance 

Antennal lobe (receives olfactory sensory input) 59Y[CS]Gal4 N 
Antennal lobe C133[CS]Gal4 N 
Antennal lobe H24[CS]Gal4 N 
Antennal lobe MT14[CS]Gal4 N 
Antennal lobe KL116[CS]Gal4 N 
Mushroom body (implicated in olfactory response) 201Y[CS]Gal4 N 
Mushroom body 238Y[CS]Gal4 N 
Mushroom body C309[CS]Gal4 N 
Mushroom body C747[CS]Gal4 N 
Mushroom body 72Y[CS]Gal4 N 
Mushroom body 30Y[CS]Gal4 N 
Mushroom body & eye 107-E[CS]Gal4 N 
Antennal lobe & mushroom body C739[CS]Gal4 N 
Antennal lobe & mushroom body C492[CS]Gal4 N 
Central Complex (implicated in movement control) 78Y[CS]Gal4 Y (p =0.0283) 
Central Complex C232[CS]Gal4 N 
Central Complex C42[CS]Gal4 N 
Central Complex C507[CS]Gal4 N 
Central Complex OK348[CS]Gal4 N 

Odor avoidance was measured in all lines at 4 weeks of age, n =8. Sod1 overexpressor 
lines in each data set were compared to their relevant Gal4/+ control and the hSod1/+ 
control tested in parallel for effects on odor avoidance by ANOVA. N indicates no 
significant effect; Y indicates a significant effect.  
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Figure 9. Odor avoidance senescence and survival following Sod1 overexpression in 
central complex. (A) Odor avoidance performance index (PI) analyses revealed 
significant effects of age and genotype and a significant interaction between these two 
parameters (two-way ANOVA, p ≤0.0075, n =8) on the performance of Sod1 
overexpressing flies, 78Y[CS]Gal4/hSod1(●) and controls 78Y[CS]Gal4/+ (▲), and 
hSod1/+ (■). Tukey’s HSD post-test revealed, however, that Sod1 overexpressors did not 
perform significantly better than either control group. Odor avoidance data are mean ± 
S.E.M. (B) There was no change in mean or median life span following Sod1 
overexpression in the central complex.  
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Next, the possibility that attenuated decline in olfactory behavior seen via elevated SOD1 

activity requires Sod1 overexpression throughout the entire nervous system was 

examined using pan-neuronal or pan-glial expressing Gal4 drivers of Sod1 

overexpression (no available Gal4 driver expresses throughout both neuronal and glial 

cells). Pan-glial Sod1 overexpression had no effect on behavioral decline (Fig 10C) 

whereas pan-neuronal expression, which augmented SOD1 activity in fly heads (Fig. 

10D) appeared to exert a subtle delay in odor avoidance senescence (Fig 10A and 10B). 

Furthermore, pan-neuronal Sod1 overexpression did not confer any positive effect on 

age-related decline of negative geotaxis behavior or life span suggesting that there were 

no clear beneficial effects of pan-neuronal Sod1 overexpression on functional senescence 

or survival (Fig. 11).  

 

4. Discussion 

Whole-body Sod1 overexpression reproducibly attenuated olfactory behavior aging and 

extended the life span of Drosophila. There has been some debate in the literature 

concerning the validity of previously reported life span extensions following Sod1 

overexpression. This concern surrounds the fact that increased longevity has been 

reported in comparison to controls with fairly short life spans and therefore may represent 

a weak genetic background rescue phenotype and not a bona fide attenutation of aging in 

an otherwise healthy fly. An important finding in the current study was that Sod1 

overexpression increased longevity in long-lived genetic backgrounds (control mean life  
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spans ranged from 54 to 61 days) reinforcing the tenet that Sod1 overexpression 

genuinely impacts aging. 
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Figure 10. Odor avoidance behavior in flies overexpressing Sod1 in the nervous 
system. Pan-neuronal GAL4 drivers ApplGal4 and elavGal4 (A and B) and the pan-glial 
driver repoGal4 (C) were used to achieve Sod1 overexpression in the nervous system. In 
(A), there were significant effects of age and genotype and significant interaction 
between these factors on odor avoidance behavior (two-way ANOVA, P≤0.0258, n =16). 
Tukey’s HSD test revealed that Sod1 overexpressors performed significantly better than 
+/+; hSod1/+ controls but not ApplGal4/+; +/+ controls although there was a significant 
interaction between age and genotype between these last two groups (p=0.0041). In (B), 
analyses revealed significant effects of age and genotype on behavior (two-way ANOVA, 
P<0.0001 for both factors, n =16). Tukey’s HSD post-test indicated that Sod1 
overexpressors performed significantly better than the +/+; hSod1/+ control (p<0.05) but 
not the elavGal4/+; +/+ control. In (C), there were significant effects of age and 
genotype (two-way ANOVA, p<0.0001, n =16) although Tukey’s HSD test revealed that 
Sod1 overexpressors only performed significantly better than hSod1/+ controls and not 
repoGal4/+ controls. (D) An in-gel SOD activity assay revealed an increase in SOD1 
activity in heads of flies overexpressing Sod1 pan-neuronally via elavGal4. Odor 
avoidance data (mean ± S.E.M.) are compiled from two independent experiments.  
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Figure 11. Negative geotaxis senescence and life span in flies overexpressing Sod1 in the 
nervous system.  Survival studies (B,D,F) indicated that there was no substantive increase in 
mean or median life span conferred by Sod1 overexpression in all lines tested. Negative geotaxis 
analyses in (A) revealed significant effects of age and genotype and a significant interaction 
between these factors on behavior across age (two-way ANOVA, P<0.0066, n =16). Tukey’s 
HSD test revealed that Sod1 overexpressors performed better than +/+; hSod1/+ controls but not 
ApplGal4/+; +/+ controls. In both (B) and (C), there were significant effects of age and genotype 
on performance (individual two-way ANOVA, p<0.0001 in both cases for both factors) although 
Tukey’s HSD post-test revealed that Sod1 overexpressors did not perform statistically better than 
either control group in either data set. Life span data are representative of two independent 
experiments. Negative geotaxis data are mean ± S.E.M. 
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Surprisingly, motor neuron-specific Sod1 overexpression in our studies did not lead to an 

increase in mean life span in contrast with a previous report (Parkes et al., 1998). 

Attempts by other investigators to reproduce these results have similarly failed (personal 

communication) although the reasons underlying these discrepancies are currently 

unknown. While much research effort has been focused on discovering genetic 

manipulations that prolong life span in various model organisms, few attempts have been 

made to determine how such manipulations affect physiological function during aging. 

Here, ubiquitous Sod1 overexpression was shown to significantly attenuate aging of 

olfactory response behavior suggesting a protective effect in tissues mediating this 

behavior. Tissue-specific Sod1 overexpression studies indicate that neither muscle nor the 

nervous system alone mediates the effects of enhanced SOD1 activity on odor avoidance 

behavior. Interestingly, odor avoidance senescence was slightly mitigated by pan-

neuronal (Fig. 10) or pan-muscle (Fig. 8) Sod1 overexpression individually, suggesting 

that combined expression throughout muscle and the nervous system might bestow more 

substantial effects similar to those seen via ubiquitous increase in SOD1 activity. The 

survival studies conducted here also indicated that Sod1 overexpression in neither muscle 

nor the nervous system recapitulated the life span extension conferred by ubiquitous Sod1 

overexpression. Hence, these effects may also depend on combined overexpression in 

muscle and nervous system tissues. Several other feasible explanations could also 

account for the lack of behavioral and survival effects seen in tissue-specific studies: (i) 

there may be optimal levels of SOD1 activity induction required that were not achieved 

in these studies; (ii) The temporal dynamics of Gal4 expression and therefore Sod1  
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overexpression throughout the fly life span for most Gal4 drivers used in this study are 

unknown and could be central to the effects observed in ubiquitous and tissue-specific 

studies (iii) there may be untested tissues that mediate the positive effects of Sod1 

overexpression on odor avoidance senescence and survival.  

  

The lack of clear tissue-specific effects notwithstanding, the protective effect of 

ubiquitous SOD1 augmentation against senescence of odor avoidance behavior is 

informative since it provides preliminary evidence that increasing SOD1 activity might 

preserve functionality in aging organisms. The search for interventions that promote 

“healthy” aging by protecting against age-related functional declines is becoming 

increasingly important in an aging society. Manipulations in the levels of key 

antioxidants that extend life span are good candidates for having such effects on 

functional senescence and should be explored further. 
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Research Chapter 2.  

Effect of Graded Reduction in Sod2 expression on Mitochondrial Oxidative 

Damage, Functional Senescence, Neurodegeneration and Life Span 

 

1. Introduction 

SOD2 is a key enzymatic antioxidant located at the primary source ROS generation in 

cells, the mitochondria (Kirby et al., 2002). Oxidative damage due to the attack of ROS 

on cellular macromolecules accumulates with age and is thought to be a primary driving 

force in aging and age-related pathology (Sohal et al., 2002). Complete loss of SOD2 in 

mice leads to a striking phenotype which includes mitochondrial dysfunction, 

neurodegeneration, cardiomyopathy and dramatic life span reduction. Genetic knock-out 

of Sod2 in Drosophila was also shown to severely reduce life span (Duttaroy et al., 

2003). To further explore the role of SOD2 in protecting flies from aging and age-related 

pathology, a series of Drosophila mutants were generated with progressively reduced 

Sod2 expression. Indices of mitochondrial oxidative damage, nervous system integrity, 

functional senescence and life span were measured to assess how graded reductions in 

Sod2 expression would affect each age-related parameter. Accelerated appearance of 

mitochondrial oxidative damage, behavioral senescence and neuronal loss was found only 

in flies with the most severe Sod2 reductions whereas all mutants experienced life span 

reductions in proportion to the extent of Sod2 silencing.  
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2. Materials and Methods 

 

2. 1 Western blots (Atanu Duttaroy lab) 

Total protein was extracted in sample buffer (0.5 M Tris-HCl pH 6.8, 3% glycerol; 0.4% 

SDS and 10 mM DTT) from age-matched young flies. Samples containing equal amounts 

of protein were electrophoresed using 9% discontinuous SDS-PAGE and transferred to 

PVDF membranes. Transferred proteins were probed with rabbit anti-SOD2 primary 

antibody (Stressgen, Canada) at 1:5000 dilution and subsequently with HRP-conjugated 

anti-rabbit secondary antiserum (Calbiochem, USA) at 1:5000 dilution and detected with 

ECL using the manufacturer’s protocol. Western blots were quantified by scanning the 

exposed films. Luminescence units derived from SOD2 bands for each genotype were 

expressed as percentage values of Sod2KGr/KGr samples. The final values were compiled 

from three blots. 

 

2.2 Aconitase activity (Atanu Duttaroy lab) 

Total aconitase activity (most of which was shown to be mitochondrially located (see 

Paul et al., 2007) was measured from whole fly extracts in reaction mixtures containing 

0.6 mM MnCl2, 2 mM citric acid, 50 mM Tris-HCl, 0.2 mM NADP+ and isocitrate 

dehydrogenase (~0.5 units/µl), pH 8.0. Aconitase converts citrate to isocitrate which in 

turn is converted to α-ketoglutarate by isocitrate dehydrogenase with concomitant 

generation of NADPH from NADP+. Aconitase activity was calculated from the increase 

in absorbance at 340 nm due to NADPH generation.  
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2.3 Survival (Atanu Duttaroy lab) 

All lifespan studies were done in population cages with approximately 500 flies per cage.  

2-3 day old flies were briefly anesthetized under CO2, separated according to sex and 

counted. Males and females were allowed to recover for 24 hours and equal number of 

males and females were added to each population cage. Mortality cages were kept in 

insect chambers maintained at 24°C. Flies were cultured on regular fly media containing 

maize, yeast, agar and molasses. The number of dead flies was assessed daily. 

 

2.4 Odor avoidance 

All flies for behavioral tests were reared and aged at 25°C, 60% relative humidity under a 

12 hour light/dark cycle. Avoidance of 4-methylcyclohexanol (MCH, Sigma Chemical 

Co. St. Louis, MO, USA, dilution factor 1:100) was measured. One- to four-day-old 

adults were briefly anesthetized with CO2, separated by sex, and males were transferred 

in groups of 25 to fresh food vials. Male flies at various ages were transferred to a T-

maze. After one minute of rest, flies were allowed two minutes to choose between a maze 

arm containing an air stream with MCH and an opposing arm containing an air stream 

without an explicit odorant. After each two-minute choice test, flies were briefly 

anesthetized with CO2. Flies that moved into the two arms of the T-maze were counted 

and transferred together into a fresh food vial for aging until the next assessment.  

Avoidance indices were calculated as described in Chapter 1 and then normalized to the 

performance of 3-5 day old w[CS] control flies tested in parallel during each assessment.  
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2.5 Negative Geotaxis  

Groups of 25 male flies were collected under brief CO2 anesthesia and allowed to recover 

at least 18 hours at 25°C and 55% relative humidity prior to assay. Flies were transferred 

to the RING apparatus (described in Gargano et al., Exp Gerontol. 2005). After a 1 

minute rest, the apparatus was rapped sharply on a table three times in rapid succession to 

initiate negative geotaxis responses. The flies’ positions in the tubes were captured in 

digital images taken 4 sec after initiating the behavior. This constituted one trial. Five 

trials separated by 30 sec inter-trial rest periods were performed in all experiments. After 

testing, flies were transferred to food vials and housed until the next test. Digital images 

of the flies were transferred to a PC and analyzed to determine the positions for each fly 

in each tube as an X-Y coordinates. The performance of flies in a single vial was 

calculated as the average of 5 consecutive trials to generate a single datum. Five vials of 

flies were tested per genotype to derive N=5. 

 

2.6 TUNEL assays (Atanu Duttaroy lab) 

TUNEL assays were performed using the In-Situ Cell Death Detection Kit, AP (Roche 

Diagnostics, USA), according to the manufacturer’s instructions. Age-matched specimen 

heads were dissected, fixed in FAAG (4% formaldehyde, 5% acetic-acid, 1% 

glutaraldehyde dissolved in 80% ethanol), embedded in paraplast, and sectioned at 7µm.  

TUNEL detection was performed using the optional alkaline phosphatase detection 

procedure (Roche Diagnostics, USA) and digitally imaged in bright field at 400X on a 

Zeiss Axioskop 2 plus microscope. 
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2.7 Statistical analyses 

All statistical analyses were done using either JMP (SAS, Cary, NC, USA)  or GraphPad 

Prism (GraphPad Software, Inc., San Diego, CA, USA). Specific statistical analyses 

performed are indicated in each Figure legend. 

 

3. Results 

 

3.1 Generation of flies with progressive reduction in Sod2 expression 

A series of Sod2 mutants were generated in the laboratory of Dr. Atanu Duttaroy and 

assessed for Sod2 expression levels by Western blot in his lab. P-element insertion 

KG06854 is located in the 5’-untranslated region of the first exon in Sod2 (Fig. 12). Flies 

homozygous for this insert (Sod2KG/KG) produced about 46% of SOD2 protein compared 

to flies homozygous for a revertant allele, Sod2KGr/KGr generated via precise excision of 

the P-element (Fig. 12). Imprecise excision of KG06854 resulted in a strong loss of 

function allele, Sod2n283 that has undetectable SOD2 protein or activity (Duttaroy et al., 

2003). Further molecular analyses revealed that the Sod2n283 chromosome carries a 167 

bp deletion that removes portions of the first exon and intron of Sod2. Flies heterozygous 

for this allele (Sod2n283/+) expressed about 50% of SOD2 protein relative to revertant 

controls. A Sod2KG/n283 transheterozygote expresses only 22% of SOD2 protein relative to 

Sod2KGr/KGr. These experiments show that Sod2KG is a partial loss-of-function allele 

whereas Sod2n283 is a null allele. Additionally, our studies show that by using these alleles 

alone or in trans, flies with progressively reduced Sod2 expression can be generated. 
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Figure 12. Sod2 mutant generation and SOD2 protein levels. (A) Sod2KG is the 
original P-insertion located in the 5’ untranslated region of Sod2. Sod2n283 has a 167 bp 
deletion within exon 1 and part of intron 1. The span of the deletion was confirmed by 
PCR sequencing using a combination of primers 1 and 5.  Sod2KGr is a precise excision 
derivative of Sod2KG as revealed by DNA sequencing. Molecular coordinates are 
according to FlyBase release 3.0. (B) Densitometric analysis of SOD2 protein normalized 
to levels in Sod2KGr/KGr revertant controls from Western blots. Data are mean ± SD (n 
=3). Experiments were performed in Atanu Duttaroy’s lab. 
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3.2 Reduced Sod2 expression causes mitochondrial oxidative damage 

Aconitase is a citric acid cycle principally localized to the mitochondrial matrix in 

Drosophila (Das et al., 2001). Aconitase contains an iron-sulfur cluster which renders it 

susceptible to oxidative inactivation specifically by superoxide (Kirby et al., 2002). 

Hence, reductions in aconitase activity can be indicative of increased superoxide flux in 

cells. Since aconitase is integral to the citric acid cycle, reduced activity also indicates 

impaired mitochondrial function and is a hallmark of normal aging in Drosophila (Das et 

al., 2001). Aconitase activity was reduced by about 75% in Sod2n283/n283 homozygotes and 

Sod2n283/KG  transheterozygotes compared to revertant controls (Fig. 13). In contrast, the 

activity of fumarase, a citric acid cycle enzyme that is not sensitive to oxidative 

inactivation, was unaffected by reduced Sod2 expression (data not shown). Interestingly, 

aconitase activity was found to be normal in young Sod2n283/+ heterozygotes, suggesting 

that reducing SOD2 by approximately 50% did not significantly alter superoxide levels in 

young flies.  

 

3.3 Progressive reduction in Sod2 expression shortens life span   

Survival studies were performed to determine the impact of progressive reduction of 

Sod2 expression on life span. Revertant control (Sod2KGr/KGr) flies had mean and 

maximum life spans of 50.4 and 86 days, respectively (Table 6). Mean and maximum life 

spans were reduced by 20-24% in Sod2n283/+ heterozygotes and Sod2wk/wk homozygotes, 

flies with  ~50% of normal SOD2 levels. 
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Sod2KGr/KGr Sod2n283/+ Sod2n283/KG Sod2n283/n283

  

   

*** ***

Figure 13. Reduced aconitase activity in Sod2 mutants. 
Aconitase activity data are mean ± S.D. of at least three 
independent determinations. ***, significantly different 
from revertant control (Sod2KGr/KGr), p<0.001. Experiments 
were performed in Atanu Duttaroy’s lab 
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Hence, although young Sod2n283/+ flies had no measurable reduction in aconitase activity 

(Fig. 13), their substantial life span reduction suggests that they are under increased 

oxidative stress. Mitochondrial superoxide generation increases with age in many 

organisms including flies (Sohal et al., 2002) and loss of Sod2 expression to the extent 

found in Sod2n283/+ flies may lead to an age-dependent increase in oxidative stress. 

Further reduction of Sod2 expression by ~75% in Sod2n283/KG transheterozygotes 

shortened mean and maximum life spans by 38% and 43%, respectively (Table 6). 

Complete loss of SOD2 function was previously shown to results in a mean life span less 

than 24 hours and maximum life span around 36 hours (Duttaroy et al., 2003). These data 

demonstrate that SOD2 activity is crucial for normal life span and that graded reduction 

in Sod2 expression results in progressively shortened life span in Drosophila. 

 

       Table 6. Sod2 mutant life spans 
Genotype Mean Life Span (days) 

Sod2KGrKGr (n = 679) 50.4 
Sod2n283/+ (n = 1038) 41.5 
Sod2KG/KG (n = 704) 40.0 
Sod2KG/n283 (n = 687) 31.1 

       See main text for detailed description 

 

3.4 Functional senescence is accelerated by reduced Sod2 expression 

Olfactory abilities decline with age in a number of species including Drosophila 

(Grotewiel et al., 2005). Odor avoidance was assessed as a function of age in Sod2 

mutants males to investigate whether elevated ROS influences age-related decline in this 

behavior (Fig. 14). Male flies were used in all behavioral assays since their behavioral  
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aging is not complicated by egg laying and reproductive history. Odor avoidance 

decreased across the first seven weeks of age in control flies (Sod2KGr/KGr) as expected 

(Fig. 14). Decline in this behavior was indistinguishable between Sod2KG/KG flies and 

controls but was substantially accelerated in Sod2n283/KG and even more so in Sod2n283/n283 

flies. The DT50 values (age at which performance of a cohort has declined by 50% of 

initial levels measured in young animals) for controls and Sod2KG/KG were approximately 

6 weeks whereas DT50s for Sod2n283/KG and Sod2n283/n283 were about 3 weeks and 10 hours 

of age, respectively. Hence, accelerated declines in odor avoidance performance emerged 

once SOD2 was reduced more than 50% and were seen to be progressively pronounced 

thereafter. 

 

To investigate whether SOD2 reductions affected the rate of locomotor function decline, 

negative geotaxis performance was measured across age in Sod2 mutants (Fig. 14). Akin 

to the odor avoidance results ~50% reduction of SOD2 did not significantly affect the 

rate of negative geotaxis decline although in contrast to the odor avoidance results, 

Sod2n283/KG  flies with ~75% reduction in SOD2 also exhibited no change in the rate of 

negative geotaxis decline (Fig. 14E). Complete loss of SOD2 resulted in profound 

locomotor deficits compared to controls even 2 hours into adult life, and this behavior 

was absent in Sod2n283/n283 flies by about 6 hours of age (Fig. 14F). These results indicate 

that reducing SOD2 levels by more than 75% produced locomotor deficits in flies 

whereas declines in negative geotaxis behavior were largely unaffected by lesser 

reductions in SOD2.  
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Figure 14. Senescence of odor avoidance and negative geotaxis behavior in Sod2 
mutants. Odor avoidance (A-C) and negative geotaxis (D-F) behaviors were assessed in 
male revertant control (open circles) and Sod2 mutant (closed circles) flies at the ages 
indicated. For Sod2KG/KG (A,D), there was a significant effect of age but not genotype on 
odor avoidance behavior (two-way ANOVA p<0.0001 for effect of age) and effects of 
age and genotype on negative geotaxis (two-way ANOVA, p<0.05) but no effect of 
genotype on the rate of decline of geotaxis (determined from measurements of aROD 
over the assessment period). For Sod2n283/KG (B,E), there were effects of age and 
genotype on both odor avoidance and negative geotaxis (individual two-way ANOVAs) 
but again no effect of genotype on rate of geotaxis decline (determined from 
measurements of aROD over the assessment period). For Sod2n283/n283, a two-way 
ANOVA revealed an effect of genotype on odor avoidance and negative geotaxis 
behavior (p <0.002) and a significant interaction between age and genotype on odor 
avoidance (p<0.005). Data are mean ± S.E.M., n = 8-16 for odor avoidance and n = 5-10 
for negative geotaxis.  
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3.5 Complete loss of SOD2 causes neuronal cell death 

Exposure to increased oxidative stress via loss of SOD2 can result in neuronal 

degeneration in mice (Lynn et al., 2005). To determine whether reduced Sod2 expression 

caused neuronal cell death in flies, DNA strand breakage was assessed by TUNEL 

staining (Fig 15). Brain sections from Sod2n283/n283 homozygotes showed widespread 

TUNEL-positive nuclei within hours after eclosion (Fig. 15B) whereas those from newly-

emerged Sod2n283/+ heterozygotes and revertant controls (Fig. 15C) did not. Similar levels 

of neuronal cell death were observed in brains from both of these lines at about 9 weeks 

of age (Fig. 15D), suggesting that an ~50% reduction in Sod2 expression did not affect 

the normal course of age-related neuronal cell death.  
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Figure 15. TUNEL staining in Sod2 mutants. (A) TUNEL positive nuclei (blue) in 
adult brain sections following induction of DNA fragmentation with DNase I. (B) 
Sod2n283/n283 flies (~20 hrs old) exhibit high levels of fragmented DNA indicative of 
neuronal cell death. (C) Young Sod2KGr/KGr flies displayed little DNA fragmentation. By 
9 weeks of age, both Sod2n283/+ (D) and  Sod2KGr/KGr flies (not shown) began to exhibit 
DNA fragmentation. Experiments were performed in Atanu Duttaroy’s lab. 
 
 

 

 

 



www.manaraa.com

84 

4. Discussion 

Studies examining the effects of SOD2 reduction in animals have been conducted in mice 

heterozygous or homozygous for a Sod2 null allele, resulting in partial or full loss of 

Sod2 expression, respectively. Sod2 knock-out mice display a number of severe 

phenotypes including neonatal lethality, neurodegeneration, motor impairments and 

cardiomyopathy (Li et al., 1995). Interestingly, despite the fact that Sod2+/- heterozygous 

mice exhibit elevated mitochondrial oxidative damage and apoptosis, these mice do not 

display any gross phenotype or change in life span (Kokoszka et al., 2001). Here, we 

investigated the effects of graded reduction in Sod2 expression on mitochondrial 

oxidative damage, age-related functional declines, neuronal cell death and life span in 

Drosophila. Collectively, our studies demonstrate a progressive effect of reducing Sod2 

expression on these aging parameters, supporting a link between oxidative damage, age-

related functional declines and life span. Moreover, these studies indicate that life span in 

flies is closely correlated with the ability to eradicate ROS at their primary source, the 

mitochondria. Our studies and those in mice can be used to highlight important 

similarities and differences in SOD2 function between insects and mammals. Complete 

loss of SOD2 in flies and mice results in severe mitochondrial oxidative damage, 

neurodegeneration and behavioral phenotypes leading to early-onset mortality (Kirby et 

al., 2002; Li et al., 1995; Duttaroy et al., 2003). Additionally, both species exhibit 

substantive behavioral phenotypes only when the majority of Sod2 expression is lost. An 

important difference exists, however, in that flies with ~50% loss of Sod2 expression 

experience a 20-24% reduction in life span whereas mice with comparable SOD2  
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reductions have a normal life span relative to controls despite evidence of 

macromolecular damage. This raises the possibility that oxidative damage and life span in 

mice may not be as intimately linked as in flies. Supporting this hypothesis, 

overexpression of Sod1 has been shown to increase mean life span in flies but not in mice 

(Huang et al., 1999; Gallagher et al., 2000; Sun et al., 1999; Parkes et al., 1998; Orr and 

Sohal, 1994). Furthermore, mean life span is reduced severely by 78% in Sod1 null 

mutant Drosophila (Phillips et al., 1989) but only by about 30% in Sod1 null mice 

(Elchuri et al., 2005) indicating that elevated levels of ROS in mice and flies do not have 

comparable consequences on longevity. An alternative possibility in the case of Sod1 null 

mutants is that mice are better able to tolerate reductions in SOD1 levels because they 

generate less ROS under physiological conditions as a species, and/or because they 

possess a better armament of antioxidants acting to compensate for loss of SOD1. These 

possibilities seem unlikely given the extensive oxidative damage to proteins, lipids and 

DNA observed in Sod1-null mice from an early age onwards (Elchuri et al., 2005). 

Currently, despite a well-established association between oxidative damage and life span 

regulation, the mechanism underlying this link remains to be discovered. Given the 

apparent variability in the effect of altering SOD1 or SOD2 in flies and mice, it is 

tempting to speculate that these mechanisms may possibly manifest differently in 

separate species. 
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Research Chapter 3.  

Tissue-Specific Studies Reveal a Degenerative Muscle Phenotype Underlying 

Locomotor Dysfunction and Death Upon Sod2 RNAi in Drosophila 

 

1. Introduction 

The studies reported in Chapter 2 describe how reduced Sod2 expression in flies results in 

mitochondrial oxidative damage, accelerated age-related functional declines and 

truncated life span. Although there is a well-established connection between oxidative 

damage and aging (Sohal et al., 2002), it is unclear whether this association is mediated 

by global oxidative damage throughout the body or whether oxidative damage to certain 

key tissues underlies this connection. Accordingly, the accelerated age-related 

phenotypes in Sod2 mutants could result from loss of SOD2 activity throughout the body 

or primarily due to its elimination in specific tissues which are more susceptible to 

oxidative damage. Identifying key tissues that mediate the effects of oxidative damage on 

age-related functional declines and life span determination will provide mechanistic 

insight into the effects of oxidative damage on organisms in the context of aging. Muscle 

and nervous system tissues are thought to be especially prone to oxidative damage 

because of their high metabolic rate which gives rise to high levels of mitochondrial ROS 

generation (Halliwell and Gutteridge, 1999). Here, using the yeast GAL4/UAS system to 

achieve gene knock-down in specific tissues, the effects of pan-neuronal and muscle-

specific Sod2 silencing on survival and age-related functional declines were investigated.  
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2. Materials and Methods 

 

2.1 Fly stocks and husbandry 

Flies were reared to adulthood at 25°C and 55% relative humidity under a 12 hour light–

dark cycle on a sugar : yeast : cornmeal : agar medium (10% : 2% : 3.3%: 1% w/v) 

supplemented with 0.2% Tegosept (Sigma Chemical Co., St. Louis, MO, USA) and 

active yeast. Silencing of Sod2 gene expression by RNA interference in specific tissues 

was achieved using the yeast GAL4/UAS system as described elsewhere (Bhandari et al., 

2006). Ubiquitous or spatially-restricted Sod2 knock-down was achieved using GAL4 

enhancer trap lines with tissue-specific expression patterns as desired. Once expressed, 

GAL4 binds to UAS sequences flanking a Sod2 inverted repeat (Sod2IR) transgene 

resulting in expression of sense and anti-sense Sod2 cDNA, and thereby producing a 

double-stranded RNA species (via hairpin formation) that elicits RNAi-mediated 

knockdown of native Sod2 gene expression. The UAS-Sod2IR24, UAS-Sod2IR15 and 

daughterless-Gal4 (DaGal4) lines were provided by John Phillips. Other Gal4 lines were 

from the following sources: Mef2-Gal4 from Sunita Gupta Kramer, Appl-Gal4 from 

Lawrence Goldstein, D42-Gal4 from Jay Hirsh, GMH5-Gal4 from R.J. Wessells, 24B-

Gal4 and elav-Gal4 from the Bloomington stock center and 91Y[CS]-Gal4 and 

188Y[CS]-Gal4 were generated in-house. 
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2.2 SOD activity  

Groups of 25 adult males (0-2 days old) per genotype were collected under brief CO2 

anesthesia and homogenized in extraction buffer (50 mM potassium phosphate/0.1 mM 

EDTA/2% Triton-X-100, pH 7.8) on ice. Samples were then probe sonicated for 20 sec 

and incubated at 4oC for 45 mins to rupture mitochondria. Next, samples were 

centrifuged at 14,000 rpm for 15 mins at 4oC and the resulting supernatant was harvested 

and stored at 4oC until use. Protein concentration measurements were performed using 

the Lowry method (Bio-rad DC Protein Assay). Samples containing equal amounts of 

protein were electrophoresed using Discontinuous Native PAGE (4% stacking gel pH 

6.8, 20% resolving gel pH 8.8) in sample buffer (0.5 M Tris-HCl/50% glycerol/0.01% 

bromophenol blue) at 80-100 V. SOD activity was measured colorimetrically using a 

modified version of an “in-gel” SOD assay previously described (Kirby et al., PNAS 

2002). Briefly, gels were first soaked in a solution containing 2.5 mM nitroblue 

tetrazolium in 50 mM potassium phosphate buffer for 20 mins in the dark under gently 

agitation. Gels were next washed briefly in 50 mM phosphate buffer then transferred to a 

second solution (28 mM N,N,N’,N’-tetramethylethylenediamine/28 µM riboflavin/50 

mM potassium phosphate) for 15 mins in the dark under gentle agitation. After a second 

brief wash in 50 mM pottasium phosphate buffer, gels were placed on a light box and 

exposed to white light to allow color development for approximately 15 mins. Gels were 

imaged and SOD activity index was quantified by densitometry using Alpha Imager 

software (Alpha Innotech Corp., San Leandro, CA). Statistical analysis was performed 

using JMP (SAS, Cary, NC, USA). 
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2.3 Survival  

200 adult flies of each genotype 0-3-days old were collected under brief CO2 anesthesia 

and transferred to food vials at a density of 25 flies per vial. Surviving flies were be 

counted at each transfer to fresh food, every 3-4 days. All genotypes were aged in parallel 

at 25°C, 60% relative humidity under a 12 hour light/dark cycle. Statistical analysis to 

derive mean, median and maximum life span was done using JMP (SAS, Cary, NC, 

USA). 

 

2.4 Negative Geotaxis  

Groups of 25 male flies were collected under brief CO2 anesthesia and allowed to recover 

at least 18 hours at 25°C and 60% relative humidity prior to assay. Flies were transferred 

to the RING apparatus (described in Gargano et al., Exp Gerontol. 2005) After a 1 minute 

rest, the apparatus was rapped sharply on a table three times in rapid succession to initiate 

negative geotaxis responses. The flies’ positions in the tubes were captured in digital 

images taken 4 sec after initiating the behavior. This constituted one trial. Five trials 

separated by 30 sec inter-trial rest periods were performed in all experiments. After 

testing, flies were transferred to food vials and housed until the next test. Digital images 

of the flies were transferred to a PC and analyzed to determine the positions for each fly 

in each tube as an X-Y coordinates. The performance of flies in a single vial was 

calculated as the average of 5 consecutive trials to generate a single datum. Five vials of 

flies were tested per genotype to derive N=5. 

 



www.manaraa.com

90 

2.5 Odor avoidance  

All flies for behavioral tests were reared and aged at 25°C, 55% relative humidity under a 

12 hour light/dark cycle.  Avoidance of 4-methylcyclohexanol (MCH, Sigma Chemical 

Co. St. Louis, MO, USA, dilution factor 1:100) was measured as follows: One- to four-

day-old adults were briefly anesthetized with CO2, separated by sex, and males were 

transferred in groups of 25 to fresh food vials. Male flies at various ages were transferred 

to a T-maze. After one minute of rest, flies were allowed two minutes to choose between 

a maze arm containing an air stream with MCH and an opposing arm containing an air 

stream without an explicit odorant. After each two-minute choice test, flies were briefly 

anesthetized with CO2. Flies that moved into the two arms of the T-maze were counted 

and (for longitudinal studies) transferred together into a fresh food vial for aging until the 

next assessment. Avoidance index scores were calculated as the percentage of flies that 

moved into the arm without odorant minus the percentage of flies that moved into the 

arm with odorant. These scores were normalized to the performance of 3-5 day old 

w[CS] control flies tested in parallel during each assessment. Six to ten vials of flies were 

tested for each genotype to derive N=6-10. Statistical analyses were performed with JMP 

(SAS, Cary, NC, USA). 

 

2.6 Gal4 expression histology  

Gal4 expression patterns were determined at regular intervals throughout the fly life span 

by assessing UAS-lac Z reporter gene expression in a Sod2 knock-down background. A 

recombinant chromosome containing both UAS-lac Z and UAS-Sod2IR inserts was  
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generated and the presence of both UAS constructs was confirmed by PCR. Mating 

females containing this chromosome to Gal4-harboring males produced progeny with 

Sod2 RNAi and reporter gene expression driven simultaneously in a spatially-restricted 

manner according to the Gal4 driver present.  

 

To assess Gal4 expression patterns, flies were collected at the indicated ages under brief 

CO2 anesthesia and fully submerged in Tissue-Tek O.C.T. embedding medium (Sakura 

Finetak USA, inc.) for approximately 1 hour at room temperature. Next, individual flies 

were transferred in embedding medium to a specimen holder and placed at -40oC for 30 

mins to freeze. Whole-body tissue sections (15µM) were cut using a Hacker Bright 

Cryostat model OTC5000 (GMI, Ramsey, MN) with the chamber set at -20oC. Sections 

were transferred to slides, allowed to air dry for 1 hour at room temperature then fixed in 

2% glutaraldehyde for 20 mins. Slides were then washed twice for 5 mins in PBS, and 

placed at 37oC until dry. β-galactosidase activity was triggered by adding pre-warmed X-

gal substrate to the slides for 30 mins. Slides were next washed twice for 5 mins in PBS 

and coverslips were mounted in 70% glycerol in PBS Digital images were obtained using 

a Zeiss Axioplan-2 microscope, Axiocam CCD camera, and Axiovision software (Carl 

Zeiss, Germany).      

 

Quantitative assessment of Gal4 expression was obtained by spectrophotometric 

assessment of β-galactosidase activity as previously described (Seroude Aging Cell 

2002). Three adult males were homogenized in extraction buffer (50 mM potassium  



www.manaraa.com

92 

phosphate, 1 mM MgCl2, 0.5 µg/ml leupeptin, 0.5 µg/ml aprotenin, 0.7 µg/ml pepstatin 

A, pH 7.2) at the indicated ages. Extracts were centrifuged at 14,000 r.p.m. for 5 mins 

and the supernatants were transferred. β-galactosidase activity was triggered by adding a 

portion of the sample to 100 µM chlorophenol red-β-D-galactopyranoside solution in a 

cuvette, and the change in absorbance at 562 nM over 5 mins was measured using a 

Pharmacia Biotech Ultrospec 2000 spectrophotometer (Pharmacia Biotech, Piscataway, 

NJ). Gal4 expression levels were expressed as the absorbance change per minute per 

milligram of sample protein. The same protocol was used to assess background activity 

of endogenous β-galactosidase in control flies containing both UAS constructs but no 

Gal4 and was found to be negligible. Hence, background activity was not considered 

further in our analyses.    

 

2.7 ATP levels 

ATP levels were assessed using the ATP Bioluminescent Assay Kit (Sigma product FL-

AA). Fly thoraces were dissected from 5 adult male flies under CO2 anesthesia, 

homogenized in 6 M guanine hydrochloride and heated at 95oC for 5 mins to eliminate 

endogenous ATPase activity. Homogenates were centrifuged at 14,000 rpm for 15 mins 

at room temperature, and the supernatant was diluted 10-fold in sample buffer (0.2 M 

glycine, 50 mM MgCl2, 4 mM EDTA, pH 7.4). Sample luminescence was measured 

following addition of ATP Assay Kit reagents according to the manufacturer’s 

instructions in a Wallac 1420 Victor V plate reader (Perkin-Elmer, Waltham, MA). ATP  
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concentrations of extracts were derived from calibration curves obtained using the ATP 

standards provided.  

 

2.8 Transmission electron microscopy 

Thoraces were dissected from adult male flies under anesthesia and immediately 

submerged in fixative solution (1% glutaraldehyde/2% paraformaldehyde/0.2 M sodium 

cacodylate pH 7.4) then fixed, osmicated (1% osmium tetroxide), stained (1% uranyl 

acetate) and dehydrated in a series of solutions with increasing ethanol concentration 

using a microwave-assisted protocol. Samples were next briefly incubated in propylene 

oxide then embedded using a transitional series of propylene oxide/Embed 812 resin 

mixes with higher proportion of resin used on each transfer until samples were in pure 

resin. Samples were then transferred to resin-filled moulds and placed at 60oC for 18 

hours to trigger resin polymerization. Tissue blocks were trimmed and oriented to enable 

longitudinal sectioning of the indirect flight muscles. Sections (80-100 nM) were cut and 

transferred to copper grids then visualized using a JEOL 1010 transmission electron 

microscope (JEOL USA Inc., Peabody, MA).  

 

For mitochondrial quantitation, mitochondrial density calculations were precluded by an 

inability to distinguish and therefore count individual mitochondria in TEM images. 

Instead, mitochondrial content in representative images was assessed as the fraction of 

total image area occupied by mitochondria. 4 to 8 representative low magnification  
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images were analyzed for each assessment using Scion Image software (Scion 

Corporation, Frederick, MD) resulting in a total image field of 0.65-1.3 mM2 analyzed. 

 

2.9 Caspase activity (Laurent Seroude lab) 

The caspase assay is based on the hydrolysis of the peptide substrate Ac-asp-glu-val-asp-

7-amido-4-methylcoumarin (Ac-DEVD-AMC), This assay was performed essentially as 

described before (Zheng et al., 2005). Two thoraces or abdomens were homogenized in 

lysis buffer (50 mM Hepes, pH 7.5/100 mM NaCl/1 mM EDTA/0.1% CHAPS/10% 

sucrose/5 mM DTT/0.5% Triton X-100/4% glycerol) and centrifuged at 13,000 × g for 5 

min at 4°C to collect supernatant. Ten microliters of thorax extracts (2 mg/ml protein) or 

3 µl of abdomen extracts (3 mg/ml protein) were incubated for 1 h at 27°C with 25 mM 

Ac-DEVD-AMC in lysis buffer with a final reaction volume of 50 µl. The specificity of 

the detection was controlled in a duplicate reaction pretreated for 15 min at 22°C with 2.5 

mM Ac-DEVD-CHO inhibitor. The fluorescence of this control reaction was subtracted 

from the test reaction. AMC fluorescence was determined by using a Spectra Max 

Fluorescent Microplate Reader (Molecular Devices, Sunnyvale, CA) with the excitation 

and emission set at 360 nm and 460 nm, respectively. The concentration of the AMC 

released was calculated by using an AMC standard curve Protein concentrations in the 

various extracts were measured using the Lowry method (Bio-Rad DC protein assay). 

Caspase activity was expressed as nanomoles of AMC per second per milligram of 

protein. 
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3. Results 

 

3.1 Confirmation of ubiquitous Sod2 RNAi phenotype and assessment of functional 

senescence  

Ubiquitous Sod2 knock-down using the GAL4/UAS system has previously been reported 

to result in undetectable SOD2 activity, reduced life span and mitochondrial oxidative 

damage in Drosophila (Kirby et al., 2002). Before proceeding with extensive tissue-

specific expression studies to identify possible key tissues mediating these effects, it was 

important to confirm that ubiquitous Sod2 knock-down using the GAL4/UAS system 

resulted in a similar phenotype in our hands. It was also necessary to determine whether, 

as with the Sod2 mutants we previously studied (see Chapter 2), that Sod2 knock-down 

flies using this system had accelerated age-related functional declines. As reported before 

(Kirby et al., 2002), substantial loss of SOD2 activity was observed in two independent 

Sod2 knock-down lines (Sod2IR24 and Sod2IR15, Fig. 16). Control groups consisted of 

flies harboring either a Gal4 or Sod2IR transgene alone in a Sod2+/+ background to 

control for any possible mutagenic effects caused by insertion of these transgenes that 

could cause the phenotypes observed in Sod2 knock-down lines. Some detectable SOD2 

activity remained in Sod2IR24 and Sod2IR15 lines which is consistent with the 

established priniciple that RNAi results in partial and not complete gene silencing in 

organisms (Matzke et al., 2001). In further agreement with prior studies, the mean life 

span of Sod2IR24 flies was reduced 78% relative to control groups highlighting the 

severe effect on longevity caused by substantial loss of SOD2 (Fig. 16B). To determine  
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whether Sod2 RNAi resulted in behavioral phenotypes akin to those seen in Sod2 

mutants, negative geotaxis and odor avoidance performance were measured across age in 

Sod2IR24 flies (Fig. 16C and 16D). In both of these tests, 1-day-old Sod2IR24 adults 

performed indistinguishably from controls. By day three (negative geotaxis) or day six 

(odor avoidance), clear deficits in performance could be seen for SodIR24 flies relative to 

control groups which became even more pronounced at later assessment points. By day 

nine, cohort performance in both behavioral assays had declined dramatically to around 

30% of initial scores for Sod2IR24 and further assessments were precluded by rapid 

Sod2IR24 mortality occurring thereafter.  
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Figure 16. SOD activity, life span and behavioral senescence in flies with ubiquitous 
Sod2 knock-down. (A) Extracts (each containing 45 µg protein) of adult males (0-2 days 
old) were electrophoresed on a native polyacrylamide gel and SOD activity was 
determined using an In-gel assay (see materials and methods). Sod2 knock-down caused 
a clear reduction in SOD2 activity in both lines tested (B), Survival studies revealed a 
severe reduction in mean and median life span in Sod2 knock-downs. The mean and 
median life spans (days) were as follows: +/+; DaGal4/+ (mean = 65, median = 65), 
Sod2IR24/+; +/+ (mean = 60, median = 62), Sod2IR24/+; DaGal4/+ (mean = 14, 
median = 13). (C) There was a significant effect of age and genotype and an interaction 
between these factors on negative geotaxis behavior (two-way ANOVA, p<0.0001, n =5). 
Tukey’s honestly significant difference (HSD) post-test revealed that Sod2 knock-down 
lines performed significantly worse across age than both control groups. (D) There was a 
significant effect of Sod2 knock-down on olfactory behavior decline (two-way ANOVA, 
p<0.0001, n =8). Again, Tukey’s HSD post-test indicated that the Sod2 knock-down line 
performed significantly worse across age than both control groups. 
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One limitation with the use of available Gal4 drivers is that their expression patterns 

typically have not been characterized across the life span and as previously shown, can 

vary in intensity and location with age (Seroude, 2002). To determine whether DaGal4 

expressed ubiquitously over the life span of Sod2IR24 flies and was therefore driving 

Sod2 knock-down throughout the entire Drosophila body, histological staining of Gal4 

expression was carried out in flies expressing DaGal4-driven lac Z reporter gene 

expression. The fairly short half-life of β-galactosidase in flies (1 day) allows reasonably 

accurate assessment of GAL4 expression over age (Kalb et al., 1993). Indeed, Gal4 

expression was detected throughout the body at all ages assessed (Fig. 17) confirming 

that Sod2 was silenced ubiquitously. Quantification of DaGal4 expression in whole-body 

homogenates revealed comparable levels in larval and pupal stages and that expression 

levels varied significantly over the adult life span but were robust throughout. 
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Figure 17. DaGal4 expression pattern in Sod2 knock-down flies. Longitudinal sections 
through the whole body of males were taken at the adult ages indicated as described in 
materials and methods. DaGal4 is expressed ubiquitously at all ages tested. Gal4 
expression levels were quantified in whole-body extracts of 3rd instar larvae (L3), pupae 
24 hrs following puparium formation (24 PPF) and at the adult ages indicated. There was 
a significant effect of age on Gal4 expression levels (ANOVA, p<0.0001, n =3). O.D. 
data are mean ± S.D. 
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3.2 Sod2 RNAi in the nervous system has no measurable effect on SOD2 activity and a 

modest effect on functional senescence and survival 

Complete loss of SOD2 leads to neurodegenerative phenotypes in both flies and mice 

(Paul et al., 2007; Melov et al., 1999). To determine the effects of pan-neuronal Sod2 

knock-down on flies, SOD2 activity, negative geotaxis and survival studies were carried 

out. Additionally, components of the nervous system thought to be crucial for the 

negative geotaxis response were chosen for selective Sod2 knock-down in order to 

determine whether this had any effect on negative geotaxis performance in young or 

aging flies. Surprisingly, pan-neuronal Sod2 knock-down did not reduce SOD2 activity 

relative to both controls in measurements taken from the heads of young flies (Fig. 18).  
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Figure 18. SOD2 activity in pan-neuronal Sod2 knock-down flies. 
SOD2 activity was measured in extracts (containing 45 µg protein) 
from adult males (0-2 days old) as described in materials and methods. 
None of the pan-neuronal Sod2 knock-down lines exhibited 
significantly less SOD2 activity than both Gal4/+ and Sod2IR/+ 
controls when compared using Tukey’s HSD post-test following 
individual two-way ANOVAs for each knock-down plus controls. 
Data are mean ± S.D (n =3). For clarity, chromosomal designations of 
transgenes are omitted. 
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The data for Sod2IR24 and Sod2IR15 lines activated by three independent pan-neuronal 

Gal4 drivers (a total of six knock-down lines generated) showed that SOD2 activities 

were essentially unchanged in the Sod2 knock-down lines except for one line 

(91Y[CS]Gal4/Sod2IR24) that exhibited a modest reduction in SOD2 activity compared 

to controls that didn’t reach statistical significance. Phenotypic studies on negative 

geotaxis behavior showed that pan-neuronal Sod2 knock-down did confer significant 

effects on negative geotaxis declines across age for all pan-neuronal Sod2IR24 lines but 

not for any pan-neuronal Sod2IR15 lines tested (Fig 19). Likewise, Sod2 knock-down 

specifically in motorneurons or dopaminergic neurons thought to be critical for negative 

geotaxis behavior yielded significant effects on age-related decline in this behavior in the 

case of Sod2IR24 lines (Fig 20). Survival tests on pan-neuronal Sod2 knock-down flies 

revealed life span reductions in the range of 16-25% seen in the Sod2IR24 lines tested 

whereas only one of the Sod2IR15 lines had a reduced life span (Fig. 21).  

 

 

Figure 19 (overleaf). Negative geotaxis senescence following pan-neuronal Sod2 knock-
down. Negative geotaxis assays were carried out as described in materials and methods. 
Sod2IR24 (A,C,E,G) and Sod2IR15 (B,D,F,H) knock-down lines (●) with Sod2 RNAi driven by 
the Gal4 drivers indicated were compared to controls containing Gal4 (▲) or Sod2IR (■) 
transgenes alone within each data set. There were significant effects of age and genotype on all 
data sets (individual two-way ANOVAs, p<0.0001, n =5-10) except for the data set with the 
188Y[CS]Gal4/Sod2IR15 line which did not exhibit an effect of genotype when compared to its 
controls (two-way ANOVA, n =5-10). Tukey’s HSD post-test on each two-way ANOVA 
revealed that all Sod2IR24 knock-down lines performed significantly worse across age than both 
controls (p<0.05) whereas none the Sod2IR15 knock-down lines did. Data (mean ± S.E.M.) are 
compiled from two independent experiments except in (G) and (H) which are from one 
experiment.  
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Figure 20. Locomotor senescence in flies with Sod2 knock-down in motor or 
dopaminergic neurons. In (A), there were significant effects of age and genotype on 
behavior and an interaction between these factors (two-way ANOVA, p<0.0001 for age 
and genotype, p =0.0143 for interaction, n =5). Tukey’s HSD post-test revealed that 
motor neuron-specific Sod2 knock-down caused significantly worse performance than 
seen in both controls (p<0.05). (B) Two-way ANOVA indicated effects of age and 
genotype (p<0.0001, n =5). Tukey’s HSD post-test revealed that Sod2 knock-down flies 
performed significantly worse than both control groups (p<0.05). Data are mean ± S.E.M. 
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Figure 21. Survival of pan-neuronal Sod2 knock-down flies. Survival studies were 
carried out as described in materials and methods. Sod2 RNAi via the elavGal4 driver 
(A,B) resulted in life span reductions for both Sod2IR24 and Sod2IR15 lines. Sod2 
knock-down via 188Y[CS]Gal4 resulted in life span truncation in the Sod2IR24 line only. 
The mean and median life span (days) were as follows: +/+; Sod2IR24/+ (mean =73, 
median =81), +/+; Sod2IR15/+ (mean =78, median =91), elavGal4/+; +/+ (mean =78, 
median =78), elavGal4/+; Sod2IR24/+ (mean =61, median =60), elavGal4/+; 
Sod2IR15/+ (mean =62, median =63). 188Y[CS]Gal4/+ (mean =73, median =74), 
188Y[CS]Gal4/Sod2IR24 (mean =55, median =60), 188Y[CS]Gal4/Sod2IR15 (mean =92, 
median =95). 
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The effects on locomotor function and survival in pan-neuronal Sod2IR24 lines indicated 

that Sod2 expression was likely reduced in the nervous system to some extent, despite the 

lack of measurable effect on SOD2 activity. To determine whether clearer reductions in 

SOD2 activity might manifest at a later age, SOD2 activity was measured in 4-week-old 

flies, where locomotor deficits were the most pronounced. When assessed at this age, 

SOD2 activity was again indistinguishable from control flies (Fig. 22). Taken together, 

the SOD2 activity data suggest that Sod2 expression was not robustly reduced across age 

in pan-neuronal lines.   
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Figure 22. Measurement of SOD2 activity in aged pan-neuronal Sod2 
knock-down flies. There was no significant effect of Sod2 knock-down on 
SOD2 activity in 91Y[CS]Gal4/Sod2IR24 or 91Y[CS]Gal4/Sod2IR15 lines 
(individual t-tests, n =3). 
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3.3 Muscle-specific Sod2 knock-down severely affects locomotion and life span 

The consequences of muscle-specific Sod2 knock-down on SOD activity were examined. 

Two separate Gal4 drivers were each used to generate Sod2IR24 and Sod2IR15 lines 

with Sod2 knock-down throughout the fly musculature. SOD activity assays revealed 

statistically signifant reductions in whole-body SOD2 activity for all lines generated, 

ranging from 51-64% (Fig. 23A and 23B). SOD1 activity was unaffected by Sod2 knock-

down (Fig. 23C) suggesting that there was no compensatory upregulation of Sod1 

expression.  
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Figure 23. SOD activity in muscle-specific Sod2 knock-down flies. (A) In-gel SOD 
activity assay of whole-body extracts (containing 45 µg protein) from flies expressing 
Sod2IR24 or Sod2IR15 transgenes via two independent muscle Gal4 drivers (Mef2Gal4 
or 24BGal4). Sod2 knock-down flies and controls were generated as described in 
materials and methods. Densitometric analysis revealed a significant effect of genotype 
on SOD2 activity for all four Sod2 knock-down lines compared to their respective 
controls. (individual ANOVAs, p ≤0.0126, n =3). Tukey’s HSD post-test indicated that 
all Sod2 knock-down lines had significantly less SOD2 activity than both of their relevant 
control groups (*, p<0.05). There was no significant effect of Sod2 knock-down on 
SOD1 activity (individual ANOVAs). Densitometry data are mean ± S.D., n =3. 
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Negative geotaxis assessment across age revealed that while young muscle Sod2 knock-

down flies perform comparably to controls, they experience a dramatic decline in 

locomotor performance over the first week of adult life to the point where negative 

geotaxis behavior could no longer be measured in flies aged ~6 days. All controls 

exhibited normal age-related declines in negative geotaxis occurring over a period of ~8 

weeks. Additionally, reduced muscle SOD2 activity lead to a striking reduction in mean 

life span, between 91-94% for Sod2IR24 lines and 80-92% for Sod2IR15 lines.  

 

 

 

 

 

 

 

 

Figure 24 (overleaf). Locomotor senescence and survival following loss of muscle 
SOD2 activity. Newly-emerged flies with muscle-specific Sod2 knock-down performed 
comparably to control groups in negative geotaxis assessments (A,C,E,G), but thereafter 
exhibited a rapid decline in this behavior which was virtually absent in 7-day-old flies. 
All individual two-way ANOVAs revealed effects of age and genotype on behavior 
(p<0.0001, n =5). Survival (B,D,F,H) was also dramatically reduced in muscle-specific 
Sod2 knock-down lines tested. Mean and median life span (days) were as follows: 
Sod2IR24/+; +/+ (mean =69, median =73), Sod2IR15/+; +/+ (mean =71, median =80), 
+/+; Mef2Gal4/+ (mean =70, median =80), +/+; 24BGal4/+ (mean =70, median =73), 
Sod2IR24/+; 24BGal4/+ (mean =6, median =5), Sod2IR15/+; 24BGal4/+ (mean =14, 
median =11), Sod2IR24/+; Mef2Gal4/+ (mean =6, median =5), Sod2IR15/+; 
Mef2Gal4/+ (mean =6, median =5). Negative geotaxis data are mean ± S.E.M. All data 
sets are representative of two independent experiments. 
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To confirm that the Gal4 drivers used in this study were in fact muscle-specific, 

expression patterns were profiled for each Gal4 line by histological assessment of lac Z 

reporter gene expression. This revealed strong expression of Mef2-Gal4 in thoracic 

muscle and weaker expression in other muscles (Fig. 25A). 24B-Gal4 expression was 

localized both to muscle and fat body (Fig. 25B), and hence the common area of overlap 

in the expression of Mef2-Gal4, 24B-Gal4 and Da-Gal4 is muscle. Since Gal4 expression 

patterns can exhibit age-related changes, it was deemed necessary to profile the 

expression of Mef2- and 24B-GAL4 drivers across age. To recapitulate the expression 

patterns of these drivers as accurately as possible, they were assessed in a Sod2 knock-

down background. Generation of a recombinant chromosome containing Sod2IR and lac 

Z (see materials and methods) allowed us to use Mef2- and 24B-Gal4 lines to drive Sod2 

knock-down and reporter gene expression simultaneously. Assessment of expression 

patterns at intervals throughout the life span of Sod2 knock-downs led to the conclusion 

that both Gal4 drivers expressed in a spatially-consistent manner across age (Fig. 25). 

Quantitative analysis of Mef2- and 24B-Gal4 expression levels across age demonstrated 

temporal variations in expression intensity across the adult life span. In both cases, adult 

expression levels were generally higher than those in larval and pupal stages of 

development (Fig. 25) and tended to increase across the life span.  
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Figure 25. Mef2- and 24B-Gal4 expression patterns across age in Sod2 knock-down flies. 
Longitudinal sections through the whole body of males were taken at the adult ages indicated as 
described in materials and methods. Mef2Gal4 expressed strongly in the thoracic muscle (TM) 
and to a lesser extent in other muscle tissue throughout adulthood. 24BGal4 expression was found 
in throughout the adult muscle and fat body (FB). 24BGal4 expression was much weaker overall 
at all ages tested as confirmed by quantitative assessment across age. Stronger 24BGal4 staining 
in the TM was obtained upon inbubating sections in X-gal substrate for longer than the normal 
protocol used (D1 panel inset).  
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Comparison of phenotypes caused by tissue-specific knock-down to those caused by 

whole-body knock-down are informative in identifying key tissues susceptible to Sod2 

knock-down. In both ubiquitous and muscle-specific Sod2 knock-down lines, locomotor 

dysfunction occurs progressively over comparable periods. Likewise, the extent of life 

span reduction is similar following ubiquitous or muscle-specific Sod2 knock-down. 

These comparisons strongly suggest that muscle is a key tissue underlying the devastating 

phenotype observed upon ubiquituos Sod2 knock-down. Interestingly, visual inspection 

of flies with ubiquitous or muscle-specific Sod2 knock-down reveals a clear pattern in 

which flies progressively lose all locomotor function  resulting in an apparent paralysis 

that closely preceeds death.   

 

3.4 Loss of SOD2 in cardiac tissue causes moderate effects on locomotor decline and 

survival 

One muscle type critical for verterbrate survival is cardiac muscle which also functions in 

flies to circulate blood throughout the circulatory system. One feature of Sod2 null mice 

thought to be causal in their neonatal lethality is a dilated cardiomyopathy along with a 

whole spectrum of degenerative changes to the myocardium (Li et al., 1995). To test the 

possibility that loss of SOD2 in cardiac muscle might underlie the locomotor and 

mortality phenotypes accompanying Sod2 knock-down, flies with cardiac-specific 

silencing of Sod2 were generated and assessed for negative geotaxis behavior across age 

and survival. Age-associated negative geotaxis declines were significantly accelerated by 

loss of cardiac SOD2 (Fig. 26). This decline, however, was much less rapid than that  
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observed with pan-muscle Sod2 knock-down. Similarly, cardiac-specific Sod2 knock-

down resulted in a modest decrease in life span (10-15%) that did not match the severe 

mortality effects seen in pan-muscle lines (Fig. 24). These data indicate that loss of SOD2 

activity in cardiac muscle may only partially contribute to the phenotypes observed upon 

Sod2 knock-down throughout the musculature.  
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Figure 26. Cardiac Sod2 knock-down effect on locomotor senescence and survival. 
There were significant effects of age and genotype on negative geotaxis behavior (A,C) 
in cardiac-specific Sod2IR24 and Sod2IR15 lines (individual two-way ANOVAs, 
p<0.0001, n =5) and Tukey’s HSD test revealed that these lines were both significantly 
different to each of their control groups (p<0.05). Loss of cardiac SOD2 resulted in 
reductions in life span (B,D). Mean and median life spans (days) were as follows: 
Sod2IR24/+ (mean = 65, median =66), Sod2IR15/+ (mean =79, median =80), 
GMH5Gal4/+ (mean =78, median =80), GMHGal4/Sod2IR24 (mean =56, median =59), 
GMH5Gal4/Sod2IR15 (mean =69, median =73). Negative geotaxis data are mean ± 
S.E.M. All data sets are representative of two independent experiments. 
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3.5 Sod2 overexpression in the musculature does not attenuate age-related locomotor 

decline or extend life span 

The effects of silencing muscle Sod2 on function and survival illustrates the degree of 

toxic ROS generation in energetically demanding tissues such as muscle and the critical 

protective role played by antioxidants in these tissues. Normal levels of muscle SOD2, 

however, still permit the age-dependent accumulation of oxidative damage thought to 

underlie locomotor senescence (Das et al., 2001). One question that arises from these 

observations is whether normal levels of muscle SOD2 are limiting for locomotor 

function span. To address this, we tested the hypothesis that adding extra SOD2 to 

muscle by expression of a UAS-Sod2 transgene may provide greater protection against 

the accrual of oxidative damage and thereby ameliorate locomotor declines seen in 

normal aging. Additionally, since oxidative damage, locomotor senescence and life span 

determination have been linked in a number of studies (Arking and Wells, 1990; Ruan et 

al., 2002; Ku et al., 1993; Barja, 1998, Sohal et al., 1995; Barja and Herrero, 2000), 

mitigating age-associated locomotor decline could in turn lead to an extension in life 

span. Accordingly, negative geotaxis and survival studies were carried out in flies 

overexpressing Sod2. Interestingly, muscle-specific UAS-Sod2 overexpression did not 

benefit locomotor function decline or survival (Fig. 27). In fact, Mef2-Gal4-driven Sod2 

overexpression (the stronger of the two Gal4 drivers) resulted in significantly accelerated 

locomotor decline (Fig. 27C) and a slight decrease in the pre-mortality phase of 

population survival (Fig. 27D). This data taken together with the Sod2 knock-down 

results suggest that the normal levels of SOD2 activity native to Drosophila muscle are 
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in abundance and that manipulating these levels in either direction can lead to negative 

consequences on fly locomotor senescence and survival. 
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Figure 27. Locomotor senescence and survival in muscle-specific Sod2 
overexpressing flies. Negative geotaxis behavior (A,C) was significantly affected by age 
and genotype (individual two-way ANOVAs, p<0.0001, n =5). Tukey’s HSD post-test 
revealed that in (A), 24BGal4-driven Sod2 overexpressing flies performed statistically 
worse than +/+; 24BGal4/+ controls (p<0.05) and in (B) that Mef2Gal4-driven Sod2 
overexpressing flies performed significantly worse than both control groups over age 
(p<0.05). There was no substantive effect on life span when Sod2 was overexpressed via 
either Gal4 driver. Negative geotaxis data are mean ± S.E.M. All data sets are 
representative of two independent experiments. 
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3.6 Loss of muscle SOD2 leads to impaired ATP production and mitochondrial pathology  

To gain insight into the mechanism driving the loss of locomotor function and mortality 

in flies with loss of muscle SOD2 activity, several molecular-cellular studies were carried 

out. Oxidative damage-mediated impairment in the activity of mitochondrial 

macromolecules important for energy metabolism has been reported by us (Paul et al., 

2007) and other investigators (Kirby et al., 2002; Melov et al., 1999) following reduced 

Sod2 expression. The effects of muscle-specific Sod2 knock-down on energy production 

in fly muscle were examined by measuring thoracic ATP levels. There was no significant 

change in thoracic ATP levels in 1-day-old pan-muscle Sod2IR24 flies (Fig. 28) 

consistent with the normal locomotor performance in flies at this age.  
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Figure 28. Thoracic ATP levels following muscle-specific Sod2 knock-down. ATP 
levels were measured from thoracic extracts at the indicated ages as described in 
materials and methods. Comparison of Mef2- or 24B-Gal4-driven Sod2IR24 lines with 
the respective controls indicated no effect of genotype in 1-day-old flies (individual 
ANOVAs, n =3) but significant effects for both Sod2IR24 lines at 7-days of adulthood 
(individual ANOVAs, p<0.02, n =3). Tukey’s HSD test revealed that 7-day-old 
Sod2IR24/+; 24BGal4/+ flies had significantly lower ATP levels than both of its control 
groups, whereas Sod2IR24/+; Mef2Gal4/+ had significantly lower ATP than 
Sod2IR24/+; +/+ controls but not +/+; Mef2Gal4/+ controls. The age-related increase in 
ATP levels was also observed in whole-body extracts. Data are mean ± S.D., n=3. 
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ATP levels increased in the first week of adulthood (Fig. 28) as previously reported in 

Drosophila (Vernace et al., 2007) and other organisms (Dillin et al., 2002; Drew et al., 

2003). By 7-days of age, however, there was a 25-30% reduction in thoracic ATP levels 

in Sod2 knock-down flies relative to controls indicating that energy production was 

impaired at this age. Since muscle contraction requires a constant and abundant supply of 

ATP generated by mitochondrial oxidative phosphorylation, it is concievable that 

reductions in ATP levels resulting from mitochondrial oxidative damage could contribute 

to impaired muscle function in flies with loss of muscle SOD2 activity. To investigate the 

consequences of Sod2 silencing on sub-cellular integrity, thoracic indirect flight muscle 

(the largest muscle in Drosophila) was assessed by electron microscopy. On the whole, 

muscle cell ultrastructure was normal relative to controls in 1-day-old flies, with regular 

arrangement of myofibrils interspersed by rows of densely-packed mitochondria (Fig. 

29A,C and E). In contrast with control myocytes, however, there were focal regions 

across the cell containing clusters of swollen mitochondria (Fig. 29I). 

 

Figure 29 (overleaf). Thoracic mitochondrial content and total protein levels. Transmission 
electron micrographs show longitudinal or oblique sections through the indirect flight muscle, in 
which interdigitating rows of myofibrils (*) and mitochondria (m) can be seen. There were focal 
areas of swollen mitochondria (sm) in 1-day-old Sod2 knock-down flies (high magnification 
images I and J) often associated with lysosomes (L) and a widespread reduction in mitochondrial 
content by day 7 (F and H) which was confirmed by quantifying mitochondrial content in 
representative images (K). There were significant effects of age and genotype on both 
mitochondrial content (two-way ANOVA, p<0.003, n =4-8) and total protein levels (L) (two-way 
ANOVA, p <0.0005, n =3). Bonferroni’s post-test indicated significant differences between 1- 
and 7-day-old Sod2 knock-down lines (p<0.05) for both measures whereas controls were 
unchanged. Genotypes are as follows: A, I and J, +/+; 24BGal4/+ (1d), B, +/+; 24BGal4/+ (7d), 
C, Sod2IR24/+; +/+ (1d), D, Sod2IR24/+; +/+ (7d), E, Sod2IR24/+; 24BGal4/+ (1d), F, 
Sod2IR24/+; 24BGal4/+ (7d), G, +/+; Mef2Gal4/+ (7d), H, Sod2IR24/+; Mef2Gal4/+ (7d). 
Mitochondrial content and protein level data are mean ± S.D. 
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The matrix of these swollen mitochondria exhibited a rarified cristal arrangement that 

often appeared fragmented and in a state of degeneration (Fig. 29J). Interestingly, a 

number of these mitochondria were engulfed in autophagolysosomes, indicating that they 

were damaged and undergoing removal by the cell. Visual assessment of muscle 

ultrastructure in 7-day-old Sod2 knock-down flies revealed a normal arrangement of 

myofibrils but a striking paucity of mitochondria (Fig. 29F and H). Quantitative 

assessment confirmed that mitochondrial content (percent area of assessment field 

occupied by mitochondria) was significantly reduced by 32-49% in 7-day old Sod2 

knock-down flies relative to 1-day-old adults and unchanged in controls (Fig. 29K). 

Calculating mitochondrial density from micrograph images was made impossible by an 

inability to distinguish and count individual mitochondria in cells from all young animals 

and in 7-day-old controls. Collectively, these data suggest a progressive pathology in 

which oxidatively-damaged mitochondria undergo osmotic swelling (a hallmark of 

mitochondrial permeability transition) and then are removed at a rate that surpasses 

mitochondrial biogenesis, leading to an overall attrition of mitochondria. Interestingly, 

the reduced mitochondrial content observed in 7-day-old thoracic muscle corresponded to 

an equivalent (35-50%) drop in total thoracic protein at this age (Fig. 29L), highlighting 

the muscle atrophy experienced due to loss SOD2. 

 

3.7 Muscle-specific silencing of Sod2 causes apoptotic cell death 

Partial SOD2 deficiency in Sod2+/- mice was shown to result in elevated induction of 

stress-induced apoptosis in old animals (Van Remmen et al., 2001). It seemed likely that  
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the oxidative damage, reduced ATP levels and mitochondrial pathology displayed upon 

eliminating SOD2 in Drosophila would have consequences on fly muscle cell viability. 

To determine whether these events ultimately lead to cell death, caspase activity was 

measured as a marker of apoptotic cell death. Thoracic caspase activity was significantly 

elevated in 1-day-old Sod2 knock-down flies and continued to increase between 1 and 4 

days of adulthood while controls remained essentially unchanged across this period (Fig. 

30A and B). In the abdomen, 1-day-old Sod2 knock-down flies exhibited normal caspase 

activity which showed a marked increase over the first 4 days of adulthood (Fig. 30C and 

D). The earlier effects on cell death levels in the thorax may be due to the fact that 

Mef2Gal4 expresses stronger in the thorax than abdomen (Fig. 25). The elevated thoracic 

cell death apparent even in 1-day-old Sod2 knock-down flies suggests that the subtle 

morphological changes evident in mitochondria and normal ATP levels observed at this 

age may mask the extent of cellular damage already caused by mitochondrial oxidative 

stress.  
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Figure 30. Caspase activity in muscle-specific Sod2 knock-down flies. Caspase-
mediated Ac-DEVD-CHO hydrolysis was monitored in thoraces (A and B) and 
abdomens (C and D) to determine caspase activity at the ages indicated. Mef2Gal4 was 
used to drive Sod2 knock-down in Sod2IR24 (A and C) and Sod2IR15 (B and D) lines 
(●).  There was a significant effect of genotype on caspase activity in the thorax and 
abdomen of both Sod2IR24 and Sod2IR15 lines compared to controls carrying non-
activated Sod2IR (▲) or Mef2Gal4 (■) transgenes alone (two-way ANOVA, p<0.0001, n 
=4). Bonferroni’s post-tests revealed that caspase activity was significantly elevated in 
the thorax of Sod2 knock-down flies at all ages assessed (p<0.05), whereas in the 
abdomen, significant differences in both Sod2IR24 and Sod2IR15 lines were seen only in 
4-day-old flies. Experiments were performed in Laurent Seroude’s lab. 
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4. Discussion 

Taken together, these data illustrate the importance of SOD2 in protecting Drosophila 

muscle against oxidative damage. Sod2 knock-down throughout the fly musculature 

resulted in a progressive degenerative cellular and locomotor phenotype which 

culminated in death. The data suggest a model (Fig. 31) in which oxidative damage 

results in mitochondrial pathology, manifested initially as abnormal mitochondrial 

morphology and subsequently as a striking reduction in muscle mitochondrial content. 

Mitochondrial dysfunction was seen to cause a substantial deficit in ATP levels which 

likely contributed to the progressive cell death and locomotor dysfunction which 

culminated in organism death.  
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Mitochondrial dysfunction & loss

↓ muscle SOD2 activity 

Muscle cell death

Oxidative damage

Locomotor impairment

Organism death
(paralysis)

Figure 31. Schematic representation of a model linking 
loss of muscle SOD2 to fly death. See text for details.   
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It is not surprising that muscle is particularly prone to oxidative damage in the absence of 

SOD2 due to its high rate of ROS generation. The severe consequences incurred by 

reducing muscle SOD2, however, reveal the devastating nature of oxidative damage to 

this tissue on Drosophila function and survival. This strong association raised the 

possibility that normal muscle SOD2 levels might be limiting on ordinary functional 

status and survival. This hypothesis was tested by targeting Sod2 overexpression to 

muscle, which did not provide any benefitial effect on age-related functional impairment 

or survival (Fig. 27). Hence, it is likely that endogenous SOD2 is present at optimal 

levels in Drosophila muscle. The life span-extending effect of ubiquitous Sod2 

overexpression (Sun et al., 2002), is therefore not likely due to increased SOD2 levels in 

muscle. Another question asked was whether loss of SOD2 in cardiac muscle was 

responsible for the phenotype observed in flies with pan-muscle Sod2 knock-down. This 

query was based on evidence that Sod2 null mice exhibit substantial cardiomyopathy 

which was thought to be instrumental in the death of these animals. Consistent with this 

observation, selective Sod2 knock-down in cardiac tissue accelerated age-related 

functional decline and shortened life span (Fig. 26). The extent of these changes, 

however, were not comparable to those observed through pan-muscle Sod2 silencing 

suggesting that loss of cardiac muscle SOD2 was not primarily responsible for the pan-

muscle phenotype.  

 

Interestingly, the changes in mitochondrial morphology and content observed here were 

not found in Sod2 null mice which were reported to have normal skeletal muscle  
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ultrastructure (Li et al., 1995). This dissimilarity suggests that although loss of SOD2 

devastates function and survival in both species, there may be a partial separation in the 

organ systems failing in each case. The cause of this difference is unknown, but could 

include differences in  levels of ROS generation or compensatory antioxidant function in 

the muscles of these species.  

 

The almost complete lack of effect that neuronal Sod2 RNAi had on SOD2 activity, 

negative geotaxis or survival in Sod2IR15 lines and lack of clear SOD2 activity 

reductions in Sod2IR24 lines tested could be due to several explanations. To probe the 

possibility that Sod2 gene silencing was dysfunctional in the nervous system, SOD2 

activity was measured in the heads of flies with ubiquitous Sod2 knock-down. Assuming 

that nervous system SOD2 activity comprises a major portion of total head SOD2 

activity, any remaining SOD2 activity would mostly be attributable to the nervous 

system. The results showed that SOD2 activity was reduced by 82-84% in heads of flies 

with ubiquitous Sod2 knock-down (Fig. 32). Since RNAi results in incomplete gene 

silencing (Matzke et al., 2001), however, it was not possible to know whether the 

remaining SOD2 activity was primarily located in the nervous system or just the result of 

incomplete gene silencing throughout the head.  
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Figure 32. SOD2 activity in fly heads following ubiquitous Sod2 knock-down. There 
was a significant reduction in SOD2 activity compared to both control groups (ANOVA, 
p=0.0022, n=3, followed by Tukey’s HSD post-test, p<0.05). 
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The efficacy of RNAi function in the Drosophila nervous system has previously been 

demonstrated (Bhandari et al., 2006), and we are unaware of any mechanisms that might 

act to suppress Sod2 knock-down specifically in the nervous system. Nonetheless, this 

remains a possibility and if true, would preclude any accurate interpretation of the 

behavioral and life span data obtained. Another possibility is that the nervous system may  

simply contain low levels of SOD2 activity under normal conditions. In this scenario, 

changes in neuronal SOD2 activity may be obscured in measurements of total head 

SOD2 activity if it comprises only a minor portion of total head SOD2 activity. There are 

no previous reports describing the relative SOD2 activity levels in the nervous system 

and other tissues of Drosophila although levels of SOD1 were reported to be barely 

detectable in nervous tissue (Klichko et al., 1999). A lack of neuronal SOD2 is hard to 

reconcile with the high energy requirements of this tissue that would presumably 

necessitate a large mitochondrial content. Due to practical considerations, isolating the 

nervous system to measure SOD2 acitivty levels under normal and Sod2 RNAi conditions 

was beyond the scope of this investigation. Since our attempts to identify key tissues 

involved in the dramatic phenotype resulting from whole-body Sod2 knock-down depend 

on successful knock-down in each tissue of interest, we are currently unable to determine 

the contribution of nervous system Sod2 knock-down to this phenotype. 

 

The Sod2 RNAi model presented here and elsewhere (Kirby et al., 2002) is now a well-

characterized model for the effects of elevated endogenous mitochondrial oxidative 

damage on mitochondrial integrity, cell death, organism function and survival in flies.  
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One use of this model currently underway in our lab is in the search for suppressors of 

oxidative damage and its sequelae in Sod2 knock-down flies. One part of this approach 

involves overexpressing a number of candidate suppressor transgenes in Sod2 knock-

down flies and screening for manipulations that result in a rescue of life span. The 

candidate suppressors have been selected based on their potential protective effects 

against oxidative damage or its downstream effects, and include genes that encode 

antioxidants, heat shock proteins and apoptosis inhibitors. A second approach involves 

the administration of antioxidant compounds (by food supplementation) to Sod2 knock-

down flies and again screening for compounds that have a rescue effect on life span. A 

robust rescue of life span in any of these studies would indicate that some of the 

deleterious effects of silencing Sod2 at the molecular-cellular level have been mitigated 

and would warrant further investigation into which features of the Sod2 knock-down 

phenotype have been affected. These studies will hopefully shed light on successful 

approaches to suppress mitochondrial oxidative damage and if so may ultimately hold 

promise in the treatment of diseases in which pathogenesis is known to involve elevated 

mitochondrial oxidative damage. 
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Research Chapter 4.  

Characterization of Functional Senescence Data Sets 

 

Part (i) A Proposed Set of Descriptors 

 

1. Introduction 

Declines in biological function are common manifestations of aging in many phyla 

(Arking, 1998). As functional senescence is thought to drive the increasing risk of death 

with age, understanding functional senescence is important for understanding aging. 

Experimental investigation of functional senescence requires one to quantitate and 

compare age-dependent declines in function between cohorts. Such quantitation and 

comparison is often difficult owing to complexities in functional senescence data sets. 

Here, I discuss issues related to describing and contrasting age-related declines in 

function. Functional senescence data were parameterized in simple ways to generate 

descriptors for (1) the rate of functional decline, (2) the time to onset of functional 

decline and (3) total function. To illustrate how these descriptors can be used, a 

hypothetical data set and one of our previously published data sets (Goddeeris et al., 

2003) were analyzed. We found that no one descriptor alone sufficiently characterizes 

functional senescence. Useful distinctions between functional senescence in different 

cohorts can be made, however, when multiple descriptors are used in an integrated 

fashion. 
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2. Results and discussion 

Four conceptual data sets are presented to illustrate some of the complexities in 

interpreting functional senescence data (Fig. 33A).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 33. Descriptors for age-related declines in function.  (A) Control data are from 3 
experiments with w[cs] flies (Goddeeris et al. 2003).  Divergent data had the same peak value as 
control, but declined 10% during each interval.  The convergent data had a peak value 5 cm less 
than control that declined 20% during each interval.  The parallel data were 5 cm greater than 
control at all assessments.  Symbols in B and C are the same as in A.  Theoretical data were 
derived through simple mathematical operations and are not related to biological manipulations.  
(B) aROD, (C) pROD and (D) Decline-times from panel A. 
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The control data are derived from previously published studies from this lab on 

senescence of negative geotaxis in wild-type flies (Goddeeris et al., 2003). The divergent, 

convergent and parallel data sets are hypothetical; they were designed to represent three 

major types of actual results that might be consistent with ameliorated functional 

senescence as compared with the control (Fig. 33A). The divergent group had the same 

peak function as control, but declined more slowly. The convergent group had a lower 

peak value than control, but declined so that its function at the last assessment was 

indistinguishable from control. The parallel group had elevated negative geotaxis scores 

at all ages so that its curve was parallel to control. Although statistical tests such as 

analysis of variance (ANOVA) can be used to compare overall function across age in 

data sets like these (e.g Goddeeris et al., 2003), this approach leaves several questions 

unanswered, including: (1) Does the rate of functional decline differ between the data 

sets? (2) Is the time to onset of functional decline changed? (3) Is total function altered? 

Several summary statistics (descriptors) were calculated from each of these hypothetical 

data sets toward addressing these questions.  

 

First, we considered descriptors for the rate of functional decline. As a starting point, we 

calculated the absolute rate of decline (aROD, negative value of slope) from the 

hypothetical data (Fig. 33A). This descriptor depicts the absolute change in function per 

unit time determined from each assessment interval. Following the assumptions in our 

example data sets, the aRODs were lower overall for the divergent and convergent data 

sets relative to control, whereas this descriptor was identical in the parallel and control  
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data (Fig. 33B). We also determined the proportional rate of decline (pROD) on the 

example data (Fig. 33A) using the formula ((Fo−Fi)/Fo)×100% where Fo is the functional 

value at the beginning of each interval and Fi is the value at the end of each interval. This 

descriptor represents the proportion of a function that is lost during each interval. As 

designed, pROD was constant in the divergent and convergent sets with the divergent set 

being lower overall (Fig. 33C). Additionally, pROD was lower in the parallel set than in 

control (Fig. 33C).  

 

aROD and pROD naturally have different constraints based on their mathematical 

definitions. The maximum potential value of aROD is directly proportional to the 

magnitude of the function being investigated. Thus, large values for this descriptor might 

be artifactual in cohorts with peak function greater than control and small values might be 

artifactual in cohorts with peak function lower than control. From the perspective that a 

reduction in aROD could be interpreted as a reduction in the rate of functional 

senescence, this descriptor is conservative forgroups with peak function equal to or 

greater than control and less conservative in groups with peak function lower than 

control. pROD, by contrast, varies inversely with the absolute magnitude of the function. 

Given groups with similar aRODs, pROD is higher in those with lower function 

(compare control with parallel and convergent with divergent, Fig. 33C). From the 

viewpoint that a reduction in pROD could be interpreted as a reduction in the rate of 

functional senescence, pROD is a conservative descriptor in groups with peak function  
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similar to or lower than control but is less conservative in groups with peak function 

greater than control.  

 

Second, we considered a descriptor for the time to onset of functional decline. Arking & 

Wells (1990) defined a loss-of-function constant (here called decline time, DT) as the 

time required for function to decline to 50% of its peak value. To explore the usefulness 

of this descriptor further, we determined the DT75 and DT50 (time required for function to 

decline to 75% and 50% of its peak value, respectively) on the data in Fig. 33(A). Values 

for DT75 and DT50 were interpolated from second-order polynomial curve fits (the least 

complicated curve that fits all the data). As expected, both DT75 and DT50 were increased 

for the divergent set relative to control (Fig. 33D). These two measures were also 

increased in the convergent and parallel sets, although not as robustly as in the divergent 

set (Fig. 33D). Groups with increased DT50 and DT75 as in the divergent, convergent and 

parallel sets would be good candidates for having extended periods during which function 

remains high relative to peak function for each cohort.  

 

Finally, we considered a descriptor for total function throughout an experiment. As 

expected, total function (calculated as the area under the curve) was decreased (28%) in 

the convergent group and increased in the divergent (58%) and parallel(84%) groups 

relative to control. Groups such as the divergent and parallel sets could be interpreted to 

have increased total function, whereas groups such as the convergent set could be 

interpreted to have decreased total function. 
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When used together, our descriptors should provide a robust characterization of 

functional senescence data sets (Table 6). In contrast, comparing functional senescence 

between cohorts by using any single descriptor in isolation might be misleading because 

some descriptors might change while others do not and certain descriptors might exhibit 

contradictory changes.  
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Table 6.  Summary of analyses on theoretical data.  Data in Fig. 33 were analyzed as 
described in the text.  Downward arrows indicate reductions in the descriptor; upward 
arrows indicate increases.  Major interpretations are listed for each of the groups. 
 

Group aROD pROD DT
s 

Total 
Function 

Interpretations 

divergent     slows functional senescence 
and enhances total function 

      

converge
nt 

    slows functional senescence 
at the cost of total function 

      

parallel unchang
ed 

   Hyperfunctional at all 
assessments, positively 

impacts most descriptors of 
function across age 
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We would be confident that functional senescence has been slowed without obvious 

trade-offs in cohorts with reduced absolute and proportional rates of decline, extended 

decline times, and enhanced total function (e.g. divergent set). This is a straightforward 

example in which all of the descriptors have been enhanced. A more complicated case is 

the parallel set. In this case, pROD is reduced while aROD remains unchanged. If pROD 

exclusively were considered, one would conclude that the rate of functional senescence is 

slowed; if aROD exclusively were considered, the interpretation would be that the rate of 

functional senescence is unchanged. Neither of these interpretations is adequate because 

both ignore other information. By viewing all four descriptors together, one could reach a 

more satisfactory conclusion: although it remains ambiguous whether the rate of decline 

is altered, the parallel set exhibits extended decline times and enhanced total function that 

likely stem from an overall elevation in function. Thus, the parallel set would have 

meaningful positive changes in functional status within the context of aging. A final 

example is the convergent set. This example has decreased absolute and proportional 

rates of decline and extended decline times, but reduced total function. Such results 

would suggest that rate of functional senescence is slowed, but at the cost of reduced total 

functional capacity. This would indicate that an important trade-off has occurred in this 

group.  

 

We recently reported that reduced expression of βPS, the mys gene product, ameliorates 

age-dependent senescence of negative geotaxis in Drosophila (Goddeeris et al., 2003). 

Here we report values for each of the descriptors calculated from these data. aROD in  
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mysxG/+ and mysnj/+ flies (Fig. 34C) was reduced relative to control during the first two 

intervals and converged with control during later intervals. Similarly, pROD was initially 

reduced in mysxG/+ and mysnj/+ animals (Fig. 34D), but converged with control at later 

intervals. The consistent changes in aROD and pROD in all three mys hypomorphs 

suggest that the rate of functional decline is reduced by mutations in mys. Additionally, 

all three mys mutants had significantly  

increased DT75 and DT50 values (Fig. 34E) as well as elevated total negative geotaxis 

(Fig. 34F). 
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Figure 34. Analysis of negative geotaxis senescence in mys mutants. (A and B)  Overall, 
negative geotaxis was greater in mysxG/+ (A) and mysnj/+ (B) mutants than in controls (two-way 
ANOVAs, P<0.0001).  Data (mean ± S.E.M.) are from (Goddeeris et al. 2003).  aROD (C) and 
pROD (D) from the data in panels A and B.  Since the experiments in A and B used the same 
w[cs] control strain, the values for these groups were averaged in C and D.  Data are individual 
determinations for the mys mutants.  S.E.M. (not shown) ranged 0.64-1.15 cm/week for aROD 
(C) and 8-18% per week for pROD (D).  Symbols are the same as in panels A and B.  (E)  The 
DT75 and DT50 are extended in mysxG/+ (left panel) and mysnj/+ (right panel).  Data are mean ± 
95% C.I..  (F) Total negative geotaxis (area under the curve) was greater in mysxG/+ (left panel) 
and mysnj/+ (right panel) flies than in controls (resampling analysis (Lunneborg 2000), 
p<0.0001).  Data (mean ± S.E.) are derived from resampling analyses with 10,000 iterations 
(Rani and Padh 2000). 
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It is interesting that the beneficial effects of mys mutations on the rates of functional 

senescence appeared during the first few weeks of adult life. Although this change in the 

rate of functional senescence occurred only for a relatively short time, the resulting 

favorable effects on negative geotaxis were evident for a considerable time thereafter. 

Importantly, the mys mutants have increased total negative geotaxis, confirming that 

reduced expression of βPS has positive consequences on total negative geotaxis function 

during the first eight weeks of life. Together, the reduced rates of functional decline, 

extended periods of high function and enhanced total function indicate that mys mutations 

confer large beneficial effects on senescence of negative geotaxis. Our proposed 

descriptors provide a framework to characterize age-related declines in many functions 

(Arking & Wells, 1990; Le Bourg & Minois, 1999; Cook-Wiens & Grotewiel, 2002). It is 

possible that a multitude of treatments will change at least one of the descriptors in a 

positive way. We suggest that manipulations conferring the greatest beneficial effects can 

be identified when they decrease absolute and proportional rates of functional decline, 

extend decline times and enhance total function. Such determinations can be made only 

by evaluating multiple descriptors in an integrated fashion. 
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Part (ii) Use of Functional Senescence Descriptors to Reveal Distinct Genetic 

Influences on Locomotor Senescence 

 

1. Introduction 

Senescence of physiological function (functional senescence) is believed to drive the 

decrease in quality of life and the increase in mortality associated with aging (Grotewiel 

et al., 2005). Accordingly, understanding functional senescence is crucial to 

understanding the biology of aging. To facilitate the investigation of functional 

senescence, we previously designed a series of metrical analyses for quantifying and 

comparing age-associated functional impairments between cohorts (Martin et al., 2005). 

These metrics describe the rate of functional decline, the age at which function declines 

to 75%, 50% and 25% of initial performance and total function across the assessment 

period. In the current study, we used these metrics to rigorously evaluate senescence of 

negative geotaxis, a locomotor behavior in Drosophila. Age-related decline in this 

behavior is sensitive to genetic background and alleles of chico and Indy that extend life 

span (Gargano et al., 2005). Here, using a series of detailed metrical analyses, we show 

(1) that negative geotaxis declines more rapidly in Canton-S and Oregon-R than in 

Samarkand and Lausanne-S flies and (2) that mutation of chico has significantly more 

pronounced beneficial effects on locomotor senescence than does mutation of Indy.  
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2. Materials and methods 

 2.1. Fly stocks and husbandry 

Canton-S, Oregon-R, Samarkand and Lausanne-S strains flies were used as representative 

genetic backgrounds. The Canton-S strain was provided by Ron Davis (Baylor College of 

Medicine, Houston, TX, USA). The Oregon-R, Samarkand and Lausanne-S strains were 

obtained from the Bloomington Drosophila Stock Center at Indiana University 

(Bloomington, IN, USA). The Indy206 and chico1 mutants were provided by Stephen 

Helfand and Marc Tatar (Brown University, Providence, RI, USA). Flies were housed, 

collected and tested as previously described (Gargano et al., 2005).  

2.2. Negative geotaxis  

Rapid iterative negative geotaxis (RING) assays were performed as previously described 

(Gargano et al., 2005). Ten vials initially containing 25 adults each were assessed for 

each genotype and genetic background in longitudinal studies at weekly intervals. The 

performance of each vial was treated as a single datum at each age.  

2.3. Metrical analyses and statistical tests 

Metrical analyses described previously (Martin et al., 2005) were used on previously 

published senescence of negative geotaxis data sets (Gargano et al., 2005). The absolute 

rate of decline (aROD) was calculated as the change in negative geotaxis scores between  
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each assessment interval. The proportional rate of decline (pROD) was calculated as the 

proportion of a function lost during each interval. Decline time75 (DT75), DT50 and DT25, 

representing the time required for function to decline to 75%, 50% and 25% of initial 

values, respectively, were interpolated or extrapolated from second-order curve fits. Total 

negative geotaxis during each experiment was determined as the area under the curve. 

Metrics were calculated from each vial individually. Data are reported as mean ± SEM 

for the 10 vials constituting each genotype or genetic background. Since the effects of 

genetic background on senescence of negative geotaxis were similar in males and females 

and the effects of the Indy206 and Indy302 alleles on senescence of negative geotaxis were 

similar, data from only males in the genetic backgrounds and only the Indy206 allele are 

reported here for brevity. Data from females for chico1 mutants and controls were 

analyzed since loss of function in chico has more pronounced effects on aging in this sex 

(Tu et al., 2002). Parametric tests in Prism (GraphPad Software, San Diego, CA, USA) 

were used to assess statistical significance (p < 0.05).  

3. Results 

3.1. Effect of genetic background on senescence of locomotor function 

Age-dependent loss of negative geotaxis varies with genetic background (Fig. 35A, 

(Gargano et al., 2005)). Toward a better understanding of how genetic background can 

impact senescence of negative geotaxis, we performed a series of metrical analyses as 

previously described (Martin et al., 2005) on these data. To determine whether the pace  
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of senescence in negative geotaxis was influenced by genetic background, we calculated 

the absolute rate of decline (aROD) and proportional rate of decline (pROD) (Martin et 

al., 2005) from the data in Fig. 35A.  
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Figure 35. Negative geotaxis senescence in different genetic backgrounds. (A) Negative 
geotaxis in Canton-S (CS), Oregon-R (OR) Lausanne-S (LS) and Samarkand (Sam) males. There 
was a significant effect of age and genetic background on negative geotaxis (two-way ANOVA, 
p<0.0001 for both factors) and significant interactions between age and genetic background 
(p<0.0001). Data (mean ± S.E.M.) are taken from Gargano et al. (2005) and are from two 
experiments with 10 vials of up to 25 flies each. (B) There was a significant effect of age and 
genetic background as well as significant interactions between age and genetic background on 
aROD (two-way ANOVA, p<0.0001 for all factors). (C) There was a significant effect of genetic 
background on decline to 75%, 50% and 25% of initial negative geotaxis (individual ANOVAs, 
p<0.0001). Bonferroni’s post-hoc tests revealed that DT75, DT50 and DT25 for Lausanne-S were 
significantly different than all other backgrounds (p<0.001) and that DT25 for Samarkand was 
significantly different from that of Oregon-R and Canton-S (p<0.001). (D) There was a 
significant effect of genetic background on total negative geotaxis (ANOVA, P<0.0001). 
Bonferroni’s post-hoc tests revealed that total negative geotaxis was different in all genetic 
backgrounds (p<0.001).  
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Genetic background and age had significant effects on the aROD of negative geotaxis 

(Fig. 35B). aROD was higher overall in Canton-S and Oregon-R than in Samarkand and 

Lausanne-S. Statistical interactions between age and genetic background indicate that the 

effects of age on aROD were not uniform across the different genetic backgrounds tested. 

Interestingly, Canton-S, Oregon-R and Lausanne-S all exhibited a significant increase in 

aROD with age whereas Samarkand displayed an age-associated decrease in this measure 

(Fig. 35B). The age-related changes in aROD in Lausanne-S and Samarkand, however, 

were quite small. Similarly, the pROD of negative geotaxis was affected by age and 

genetic background, and was higher overall in Canton-S and Oregon-R than in 

Samarkand and Lausanne-S (data not shown). These analyses establish that the rate of 

negative geotaxis senescence was influenced by genetic background.  

To quantify the locomotor declines in Fig. 33A further, we derived the DT75, DT50 and 

DT25, which represent the time required for function to decline to 75%, 50% and 25% of 

initial values, respectively (Martin et al., 2005). Genetic background had significant 

effects on these measures (Fig. 35C). Specifically, decline times in Lausanne-S were 

consistently longer than in the other three backgrounds. Interestingly, DT25 in Samarkand 

was longer than in Canton-S and Oregon-R, although DT75 and DT50 were 

indistinguishable in these three genetic backgrounds. This suggests that Samarkand males 

exhibited a pattern of decline in negative geotaxis distinct from Canton-S and Oregon-R. 

These data demonstrate that the time at which negative geotaxis declined by quartile 

percent amounts was sensitive to genetic background.  
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We calculated area under the curve to assess the effect of genetic background on total 

negative geotaxis throughout our experiments. Total negative geotaxis was different in all 

four genetic backgrounds (Fig. 35D). Lausanne-S had the highest total negative geotaxis 

followed in descending order by Samarkand, Oregon-R and Canton-S. These data reveal 

that total negative geotaxis can vary between different genetic backgrounds by more than 

twofold. This metric illustrates a marked difference in the total functionality of these four 

genetic backgrounds.  

3.2. Effects of chico and Indy mutations on senescence of locomotor function 

Mutations in chico (Clancy et al., 2001 and Tu et al., 2002) and Indy (Rogina et al., 2000) 

extend life span in Drosophila. We previously reported that these mutations also alter 

senescence of negative geotaxis (36A and B, (Gargano et al., 2005)). To quantify and 

compare age-related loss of negative geotaxis behavior in chico1 homozygous and Indy206 

heterozygous mutants, we assessed rate of decline, decline times and total negative 

geotaxis from the data in Figs. 36A and B.  

There was a significant effect of age on aROD for both chico1 and Indy206 mutants and 

their respective controls (Figs. 36C and D). Interestingly, all strains tested in these studies 

exhibited a trend towards an increase in aROD in the second half of the assessment 

period. Overall, chico1 mutants had lower aROD values than control flies (Fig. 36C). In 

contrast, overall aROD values in Indy206 mutants were not statistically distinguishable 

from controls (Fig. 36D). chico1 mutants appeared to have reduced aRODs at most  
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assessments whereas Indy206 flies did not. This suggests that while the beneficial effects 

of chico1 on functional senescence manifested throughout the experiment, for Indy206  

 

 

 

 

 

 

 

Figure 36 (overleaf). Negative geotaxis senescence in chico1 and Indy206 mutants. 
RING assays were performed at the indicated ages on chico1 females (A) and Indy206 
heterozygous males (B). Age and genotype significantly affected negative geotaxis 
(individual two-way ANOVAs, p<0.0001 for both factors). There were also significant 
interactions between these two variables (p<0.017 in chico1 and Indy206 flies). Data (mean 
± S.E.M.) are taken from Gargano et al. (2005). (C) There was a significant effect of age 
and genotype on aROD (two-way ANOVA, effect of age, p = 0.0005, effect of genotype, 
p = 0.0121) for chico1 mutants. (D) There was an effect of age but no effect of genotype 
on aROD for Indy206 mutants (two-way ANOVA, p<0.0001). (E) There was a significant 
effect of genotype on decline to 75%, 50% and 25% of initial function for chico1 mutants 
(ANOVA, p<0.0001, followed by Bonferroni’s post-hoc tests, p≤0.01). (F) There was 
also a significant effect of genotype on decline times for Indy206 mutants (ANOVA, 
p<0.0001) although only the differences in DT75 and DT50 reached statistical significance 
by Bonferroni’s post-hoc tests (p<0.001). Genotype significantly affected total negative 
geotaxis over the assessment period for chico1 (G) and Indy206 (H) mutants (individual 
student’s t-tests, p<0.0001).  
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mutants these effects were restricted to the first few weeks of life. The pROD in negative 

geotaxis in chico1 and Indy206 mutants followed a pattern similar to that of aROD; there 

were significant effects of age and genotype on pROD in chico1 flies, but in Indy206 

mutants there was a significant effect of age only (data not shown).  

All three DTs for chico1 mutants were significantly increased (Fig. 36E). Hence, a lower 

rate of functional decline resulted in a delay in the decline time to 75%, 50% and 25% of 

initial function. This further supports the idea that chico1 delayed senescence of negative 

geotaxis throughout the function span. DTs for the Indy206 allele indicate a significant 

delay in the DT75 and DT50 (Fig. 36F). No difference was found, however, for the DT25. 

This is consistent with the positive effects of Indy mutations on senescence of negative 

geotaxis occurring mainly during the first few weeks of life.  

Total negative geotaxis during the experiments in chico1 mutants was increased by 62% 

relative to controls (Fig. 36G). Although chico1 did not bestow any increase in peak 

locomotor function in young flies (Fig. 36A), the attenuated pattern of senescence in 

chico1 animals conferred a substantial increase in their total locomotor functionality. Indy 

mutants also exhibited an increase in total negative geotaxis (Fig. 36H), although the 

effect was not as large as in chico1 flies. The larger increase in total negative geotaxis in 

chico1 mutants is consistent with the idea that chico1 loss of function had a greater impact 

on aging of negative geotaxis throughout the life span than did mutations in Indy.  
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4. Discussion 

Although most multicellular species experience some form of functional senescence 

during the post-reproductive phase of life, the nature of this senescence varies between 

different species and between individuals of the same species (Arking, 1998). Variability 

among individuals of the same species depends both on external factors related to the 

environment and internal factors including genetic composition (Stadtman, 2002, 

Grotewiel et al., 2005 and Martin and Grotewiel, 2006). We previously reported that 

senescence of negative geotaxis was sensitive to genetic background and single gene 

mutations that extend life span in Drosophila (Gargano et al., 2005). Here, we applied a 

series of detailed metrical analyses to these previously published data to better define 

genetic influences on senescence of behavior.  

Our studies demonstrate that many aspects of senescence of negative geotaxis are 

dependent on genetic background. The rates of decline were different in the four genetic 

backgrounds as were the age-dependent changes in this metric. Both aROD and pROD 

increased with age in Canton-S, Oregon-R and Lausanne-S during the first 8 weeks of 

life. In contrast, Samarkand showed a decrease in aROD with age and no significant 

change in pROD for the same period. This indicates that altered senescence of negative 

geotaxis can result from distinct changes in the age-dependent dynamics of aROD and 

pROD. All three of the DT metrics were longer in Lausanne-S than the other genetic 

backgrounds, reflecting the lower rate of locomotor decline in Lausanne-S. DT25 for  



www.manaraa.com

157 

Samarkand was longer than that of both Canton-S and Oregon-R due to the increase in 

locomotor decline with age in these latter two backgrounds. Finally, total negative 

geotaxis was different in all four genetic backgrounds and was lowest in Canton-S and 

Oregon-R, the two strains that exhibited the fastest pace of locomotor decline. Together, 

these data demonstrate that senescence of negative geotaxis in Canton-S and Oregon-R 

flies proceeds more rapidly than it does in Lausanne-S and Samarkand flies. These 

studies illustrate that senescence of negative geotaxis proceeds via patterns of decline that 

are characteristic of each genetic background, highlighting the need to control for genetic 

background in behavioral aging studies.  

Both chico1 and Indy206 mutants have altered senescence of locomotor function (Gargano 

et al., 2005). Detailed analysis of these age-related declines using our series of metrics 

revealed subtle, but important, differences in the way functional senescence is modified 

in these two mutants. The rates of decline for chico1 mutants were reduced throughout 

most of the assessment period. This resulted in a significant increase in all decline time 

measures in addition to a large increase in total negative geotaxis function in chico1 flies. 

For Indy206 mutants, reductions in the rate of decline were rather marginal overall and 

restricted to the early stages of senescence. Interestingly, early reductions in decline rates 

appeared to be followed by increases at greater ages. Nevertheless a small initial 

deceleration in the rate of decline in Indy206 flies manifested as extensions in DT75 and 

DT50 in addition to increased total negative geotaxis activity. Since mutation of chico had 

greater effects than mutation of Indy on the rates of functional decline, the time required  
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for function to decline and total function, our analyses indicate that the chico1 mutation 

exerts a larger benefit on the biological systems that support locomotor function 

throughout the Drosophila life span.  

The aROD, decline time and total function descriptors we applied here to analyze 

senescence of negative geotaxis should be useful for characterizing age-related decline in 

many other functions across age (Martin et al., 2005). When function is highest in the 

youngest groups and declines with age (as we typically find for negative geotaxis), the 

use of the descriptors is fairly straightforward. Although, we have not extensively 

investigated the use of these descriptors on data sets in which peak function initially 

increases with age and then declines (e.g., female fecundity in various species 

(Novoseltsev et al., 2003)), we predict that they will provide important insights even in 

these somewhat more complicated scenarios when used in an integrated fashion. It seems 

likely, however, that additional descriptors will be required to provide a comprehensive 

analysis of more complex data sets. For example, a measure of time to peak function 

might be informative in such cases.  
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Discussion 

 

Over the last half century, numerous theories have been put forth that attempt to explain 

why we age and how this process occurs (Kirkwood and Austad, 2000). This growth in 

attention toward aging research has been driven principally by the substantial lengthening 

of human life span which has led to a growing percentage of elderly in the human 

population and a growing burden on national health expenditures toward the elderly 

(Weinert and Timiras, 2003). Theories exploring the reasons of why organisms age are 

mainly based on evolutionary concepts that after reaching reproductive fitness, there is a 

decline in force of natural selection. If evolutionary theories hold true, then longevity 

would only be selected for if it improved reproductive fitness. Although theoretically this 

idea is feasible, in reality most animals including humans die via extrinsic causes of 

mortality (due to predation or diseases) before aging can occur (Kirkwood and Austad, 

2000). Consequently, organisms that die from extrinsic causes of mortality will evolve a 

life span that optimizes reproductive success in their own environment. Imposing 

artificial selection by selecting Drosophila flies that are the offspring of older adults 

results in the generation of long-lived fly strains (Partridge et al., 1999). This did, 

however, result in reduced fecundity in the long-lived flies supporting the idea that a 

trade-off between survival and fertility occurred (Partridge et al., 1999). This has led to 

the notion that longevity requires somatic maintenance that diverts resources away from 

reproductive fitness. Since longevity is prevented in most natural environments by  
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extrinsic mortality as mentioned above, it is likely that this loss of reproductive fitness 

would be selected against. This is the central tenet behind the ‘disposable soma’ theory 

which proposes that somatic function is maintained at high levels only for reproductive 

success and that afterwards it is disposable (Weinert and Timiras, 2003). A similar 

hypothesis based on the idea of optimization of reproductive fitness underlies the 

‘antagonistic pleiotropy’ theory which posits that pleiotropic genes with beneficial effects 

in younger animals up to reproductive age would be favorable for selection even if 

negative effects of these genes occurred at more advances ages (Kirkwood and Austad, 

2000).  

 

While evolutionary theories attempt to explain why we age, mechanistic insight into the 

aging process has been provided by numerous molecular/cellular/systemic theories of 

aging. It has been proposed that any mechanistic theory of aging should be able to 

explain (i) the loss of physiological function over time, (ii) the variability in emergence 

and progression of these losses in individual organisms and between species and (iii) the 

ability to achieve life span extensions by dietary, pharmacologic and genetic 

manipulations (Sohal et al. 2002). An in-depth examination of these theories has been 

provided elsewhere (Weinert and Timiras 2003) and the key principles are briefly 

summarized here (Table 7). Examination of these theories reveals that many of them are 

not mutually exclusive and that a number of them overlap to a certain degree. An 

increasing wealth of data from several model organisms is beginning to test the validity  
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of these theories and has led to the current widely held belief that aging is a complex 

multifactorial process that cannot be attributed to one single mechanism alone.  
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Table 7. Summary of main theories of aging  

Theory 
classification 

Theory name  Description  

Molecular Gene regulation  Changes in gene expression profiles with age  
 Somatic mutation  ↑ nucleic acid and protein damage with age 
 Error catastrophe  ↓ gene expression fidelity with age  
 Oxidative damage ↑ oxidative damage to macromolecules with age 
Cellular Cell senescence-

telomere 
↑ cellular senescence due to telomere shortening 
(replicative senescence) or cell stress (stress-
induced senescence) with age 

 Wear-and-tear Accrual of normal injury with age 
 Apoptosis ↑ programmed cell death with age 
System Neuroendocrine Change in neuroendocrine function with age 
 Immunologic ↓ immune system function with age 
 Rate-of-living Metabolic potential of each organism is fixed and 

life span determined by rate of metabolism 
Evolutionary Disposable soma Body is optimized for reproductive success, 

becomes disposable after reproductive peak  
 Antagonistic 

pleiotropy 
Genes advantageous to young organism become 
deleterious following reproductive peak but are not 
selected against 

 Mutation 
accumulation 

Genetic mutations impacting health of individuals 
past reproductive peak are not selected against 
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The free radical theory of aging was conceived by Denham Harman in the mid 20th 

century following the observation that reactive oxygen species are formed in vivo after 

radiation exposure and are responsible for the ensuing damage, some of which resembled 

an accelerated form of aging (Harman, 1956). Although initially met with a deal of 

skepticism, the free radical theory gained credibility following the demonstration of H2O2 

in vivo by Chance (Chance et al., 1979) and the discovery of superoxide dismutase by 

McCord and Fridovich (McCord and Fridovich, 1969). The free radical theory was later 

modified to the oxidative damage theory of aging upon the discovery that many reactive 

species that cause oxidative damage to cells are not actually free radicals (Sohal et al., 

2002). The oxidative damage hypothesis has been under intense investigation over the 

past 50 years. This testing has provided several lines of supporting evidence, e.g. 

oxidative damage to cell macromolecules increases with age and is often found to 

correlate with organismal longevity, and genetic or pharmacological manipulations of 

antioxidant levels have been shown to frequently result in exacerbation or amelioration of 

aging phenotypes as would be predicted by the oxidative damage hypothesis (Sohal et al., 

2002). Although these findings indicate a role for oxidative damage in life span 

determination and age-related phenotypes, they do not offer insight into the mechanism 

by which oxidative damage impacts organismal aging. Oxidative damage is known to 

have detrimental consequences on the function of key cellular macromolecules, 

especially proteins (Stadtman et al., 2005) which could concievably underly its impact in 

aging. Whether this is due to oxidative damage to a few key molecules or a more global  
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spread of oxidative damage remains to be determined and will be crucial to a proper 

understanding of the link between oxidative damage and organismal aging. 

 

A key prediction from the oxidative damage theory is that manipulating the levels of 

cellular antioxidant defenses will alter levels of ROS and thereby affect molecular 

oxidative damage and potentially impact the course of aging. In one scenario, a decrease 

in antioxidant levels might lead to an increase in ROS levels and in turn, promote 

oxidative damage and result in an accelerated manifestation of age-related phenotypes. 

Conversely, augmenting antioxidant capacity might lower pro-oxidant levels, mitigate 

oxidative damage and potentially delay or attenuate the appearance of age-associated 

phenotypes. This theory was directly tested in this investigation by manipulating the 

expression levels of the key cellular antioxidant superoxide dismutase (SOD). Extending 

the results of earlier work demonstrating an increase in life span following 

overexpression of Sod1, we found that this also lead to an attenuated decline in age-

related function in odor avoidance assays. Tissue-specific Sod1 overexpression in 

neuronal or muscle tissues failed to reproduce the delayed functional senescence or life 

span extending effects suggesting that these phenotypes were due to either (i) augmented 

SOD1 levels in a tissue not tested in our tissue-specific studies or (ii) combined Sod1 

overexpression in multiple tissues simultaneously.  
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In a separate study, a series of mutants with graded reductions in SOD2 levels were 

created in order to test the possibility that this may confer accelerated age-related 

phenotypes. Loss of SOD2 was shown to result in oxidative damage to aconitase and life 

span studies revealed that longevity was reduced in proportion to the loss of SOD2, 

strongly supporting the role of ROS in regulation of life span. Importantly, population 

survival studies showed that this life span shortening of each Sod2 mutant was not due to 

an affect on the pre-mortality phase of survival curves but due to an accelerated decline in 

survival during the mortality phase of survival plots. This finding is consistent with Sod2 

mutants experiencing reduced longevity due to accelerated aging as opposed to being 

perpetually sick since conception. In further support of this, behavioral aging was 

accelerated in mutants with greater than 50% reduction in SOD2, and apart from the 

pronounced locomotor defects observed in Sod2 null homozygotes at the youngest age 

tested, performance of newly-emerged Sod2 mutants in functional assays was comparable 

to that of controls. Tissue-targeted knock-down of Sod2 expression using RNAi revealed 

that muscle was a key tissue underlying the accelerated aging phenotypes found 

following loss of SOD2. Loss of muscle SOD2 lead to several degenerative phenotypes 

in thoracic muscle including reduced mitochondrial content and ATP levels, elevated cell 

death and progressive loss of locomotor function. Knock-down of Sod2 specifically in 

cardiac muscle resulted in significant effects on locomotor senescence and life span 

although these phenotypes were not comparable to those following pan-muscle Sod2 

knock-down indicating that cardiac-specific loss of SOD2 was not primarily responsible  



www.manaraa.com

166 

for these phenotypes. Muscle-specific Sod2 overexpression did not attenuate functional 

senescence or extend life span suggesting that it had no beneficial effects on aging and 

that muscle SOD2 levels are ordinarily in abundance. Finally, pan-neuronal Sod2 knock-

down resulted in modest acceleration of age-related locomotor function decline and 

subtle reduction in life span, although there remains a possibility that RNAi-mediated 

Sod2 knock-down was not functioning properly in the nervous system which would 

preclude an accurate interpretation of these results.  

 

Collectively, the results from this investigation support the oxidative damage theory of 

aging and illustrate a crucial role for SOD2 in fly muscle in protecting against oxidative 

damage which leads to a devastating effect on fly functionality and survival.   
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